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- Rotate keys and update signatures/MACs to the new key (using a compact
token),

- Previous work on Updatable Encryption (e.g., [Bon+13] and [LT18]),

- Equally important in context of signatures and MACs to follow good key
management practices (e.g., key-rotation in software distribution).
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We introduced two security notions:

- existential unforgeability under chosen-message attack (UX-EUF-CMA),
- unlinkable updates under chosen-message attack (UX-UU-CMA),

for X € {MAC, S}.



Leakage Profile [LT18]

We use the concept of a leakage profile originally defined, for updatable
encryption, in [LT18], to capture key, token, and signature “leakage” that cannot be
directly captured via oracles.

- Key-update inferences,

- Token inferences,

- Signature-update inferences,



Example of Leakage

epoch: e—-5 e—4 e—3 e—2 e—1 e e+1 e+2 e+3 e+4

keys: Re—s Re—y Re—3 Rea Req ke Re1 Ret2  Reis Reqy
tokens: Ae_4 Ae_3 Ae_z Ae_1 Ae AQ—H Ae+2 Ae+3 Ae+4 Ae+5

Signatu rel| ge—5 Oe—y4 Oe—3 Oe—2 Oe—1 Oe Oet1 Oet2 Oe+3 Oe+y

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX
schemes.
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- US from Key-Homomorphic Signatures [DS19],
- Lattice-based candidate US construction [GPVo8],
- UMAC from “almost” key-homomorphic PRFs [Bon+13],

- Security Proof Ideas.



Key-Homomorphic Signatures [DS19] (1/2)

Let & be a signature scheme, where secret and public key elements live in
groups (H, +) and (E, -) respectively. A Secret Key to Public Key Homomorphism
isamap u: H — E, such that:

- (SR + sk’) = u(sR) - u(sk’) for all sk, sk’ € H,
- pR = u(sR) for all (sk, pR) < KeyGen(\).
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Example: DL setting (G, p, g)

Z G
sk« Zp,pk = g** Mi{ p_>k
R—g



Key-Homomorphic Signatures [DS19] (2/2)

A signature scheme is called key-homomorphic, if it provides a secret key to
public key homomorphism and an additional PPT algorithm Adapt, such that for
all A € Hand all (pR,skR) < Gen(\), all messages M € M and all o with
Ver(pk,M,c) =1 and (pk,o’) + Adapt(pk,M, s, A), it holds that

Pr[Ver(pk',M,c’) =1 =1 A pR = pu(A)-pk.



Key-Homomorphic Signatures [DS19] (2/2)

A signature scheme is called key-homomorphic, if it provides a secret key to
public key homomorphism and an additional PPT algorithm Adapt, such that for
all A € Hand all (pR,skR) < Gen(\), all messages M € M and all o with
Ver(pk,M,c) =1 and (pk,o’) + Adapt(pk,M, s, A), it holds that

Pr[Ver(pk',M,c’) =1 =1 A pR = pu(A)-pk.

Example: [BLS01] Sk pk,m, A
l pk' = pk- g~
S — sk Adapt
m ——{sig}— o = H(m* —[adapt}— 77 TF DL
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Lattice-based candidate construction (1/2)

We start from the well-known GPV signature scheme of Gentry et al. [GPV0S8].
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Lattice-based candidate construction (2/2)

By using methods inspired by the lattice-based proxy re-signature approach of
Fan and Liu [FL19], we obtain a candidate lattice-based US signature.
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UMAC from (almost) key-homomorphic PRFs

Let (K, ®), (Y, +) be groups. Then, a keyed function F: K x X — Yisa
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input x € X, we have

F(I?1,X) + F(kz,x) = F(k1 @ kz,x)
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UMAC from (almost) key-homomorphic PRFs

Let (K, @), (I, +) be groups. Then, a keyed function F: L x X — Y is an almost
key-homomorphic PRF if F is a secure PRF and for every key kq, kR, € K and every
input x € X, we have
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Overview and Instantiations




Updatable Signatures

Table 1: Overview of updatable signature schemes.

Scheme  Assumption Model UU-CMA MD/MI UB

BLS co-CDH RO v MI v
BLS co-CDH RO v MD v
PS P-LRSW GGM v MI v
PS P-LRSW GGM v MD v
Waters co-CDH SM v MD v
GPV' SIS RO X MI T

"Provides US-EUF-CMA security only in a weakened model.
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Updatable MACs

Table 2: Overview of updatable MAC schemes.

Scheme Assumption  Model UU-CMA MD/MI  UB
BLMR (NPR) [Bon+13] DDH RO v MD v
NPR DDH RO v M v
BEKS [Bon+20] RLWE RO v MD T
Kim [Kim20] LWE SM v MD T
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Conclusion

- New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig
- Message independent constructions

- Post-quantum instantiations from lattices



Open Questions

- Construction of lattice-based US with full security?

+ Concrete bounds for UMAC from almost KH-PRFs?



Thank you for your attention!

(full version of the paper available on ePrint: ia.cr/2021/365)
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