Updatable Signatures and Message Authentication Codes

<u>Valerio Cini</u>[‡], Sebastian Ramacher[‡], Daniel Slamanig[‡], Christoph Striecks[‡], <u>Erkan Tairi</u>[§]

PKC 2021, May 10

Motivation

- Rotate keys and update signatures/MACs to the new key (using a compact token),
- · Previous work on Updatable Encryption (e.g., [Bon+13] and [LT18]),
- Equally important in context of signatures and MACs to follow good key management practices (e.g., key-rotation in software distribution).

1

Our Framework

epoch *e*

pk_e, sk_e

epoch \boldsymbol{e}

epoch \boldsymbol{e}

epoch e+1

epoch e+1

 pk_{e+1} , sk_{e+1}

Security

We introduced two security notions:

- existential unforgeability under chosen-message attack (UX-EUF-CMA),
- · unlinkable updates under chosen-message attack (UX-UU-CMA),

for $X \in \{MAC, S\}$.

Leakage Profile [LT18]

We use the concept of a leakage profile originally defined, for updatable encryption, in [LT18], to capture key, token, and signature "leakage" that cannot be directly captured via oracles.

- Key-update inferences,
- · Token inferences,
- Signature-update inferences,

epoch:	e – 5	e – 4	e – 3	e – 2	e – 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k_{e-5}	k_{e-4}	k_{e-3}	k_{e-2}	k _{e-1}	k _e	k_{e+1}	k _{e+2}	k_{e+3}	k _{e+4}
keys: tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	$\sigma_{\rm e-2}$	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	$\sigma_{\mathrm{e+4}}$

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX schemes.

epoch:	e – 5	e – 4	e – 3	e – 2	e – 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k_{e-5}	k_{e-4}	k_{e-3}	k_{e-2}	k _{e-1}	k _e	k_{e+1}	k _{e+2}	k_{e+3}	k _{e+4}
keys: tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:										

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX schemes.

epoch:	e – 5	e – 4	e – 3	e – 2	e – 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k_{e-5}	k_{e-4}	k_{e-3}	k_{e-2}	k _{e-1}	k _e	k_{e+1}	k _{e+2}	k_{e+3}	k _{e+4}
keys: tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:	σ_{e-5}	σ_{e-4}	σ_{e-3}	σ_{e-2}	σ_{e-1}	σ_{e}	σ_{e+1}	σ_{e+2}	σ_{e+3}	σ_{e+4}

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX schemes.

epoch:	e – 5	e – 4	e – 3	e – 2	e – 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k_{e-5}	k_{e-4}	k_{e-3}	k_{e-2}	k_{e-1}	k _e	k_{e+1}	k_{e+2}	k_{e+3}	k _{e+4}
keys: tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:										

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX schemes.

epoch:	e – 5	e – 4	e – 3	e – 2	e – 1	е	e + 1	e + 2	e + 3	e + 4
keys:	k_{e-5}	k_{e-4}	k_{e-3}	k_{e-2}	k_{e-1}	k _e	k_{e+1}	k_{e+2}	k_{e+3}	k _{e+4}
tokens:	Δ_{e-4}	Δ_{e-3}	Δ_{e-2}	Δ_{e-1}	Δ_e	Δ_{e+1}	Δ_{e+2}	Δ_{e+3}	Δ_{e+4}	Δ_{e+5}
signature:										

Figure 1: Example of directly obtained (green) and inferable information (blue) for UX schemes.

Constructions

 \cdot US from Key-Homomorphic Signatures [DS19],

- US from Key-Homomorphic Signatures [DS19],
- · Lattice-based candidate US construction [GPVo8],

- · US from Key-Homomorphic Signatures [DS19],
- · Lattice-based candidate US construction [GPVo8],
- · UMAC from "almost" key-homomorphic PRFs [Bon+13],

- US from Key-Homomorphic Signatures [DS19],
- · Lattice-based candidate US construction [GPVo8],
- UMAC from "almost" key-homomorphic PRFs [Bon+13],
- Security Proof Ideas.

Key-Homomorphic Signatures [DS19] (1/2)

Definition (Secret Key to Public Key Homomorphism [DS19])

Let Σ be a signature scheme, where secret and public key elements live in groups $(\mathbb{H}, +)$ and (\mathbb{E}, \cdot) respectively. A Secret Key to Public Key Homomorphism is a map $\mu : \mathbb{H} \to \mathbb{E}$, such that:

- $\mu(\mathsf{sk}+\mathsf{sk'}) = \mu(\mathsf{sk})\cdot \mu(\mathsf{sk'})$ for all $\mathsf{sk},\mathsf{sk'}\in\mathbb{H}$,
- $pk = \mu(sk)$ for all $(sk, pk) \leftarrow \text{KeyGen}(\lambda)$.

Key-Homomorphic Signatures [DS19] (1/2)

Definition (Secret Key to Public Key Homomorphism [DS19])

Let Σ be a signature scheme, where secret and public key elements live in groups $(\mathbb{H}, +)$ and (\mathbb{E}, \cdot) respectively. A Secret Key to Public Key Homomorphism is a map $\mu : \mathbb{H} \to \mathbb{E}$, such that:

- $\mu(\mathsf{s}\mathsf{k}+\mathsf{s}\mathsf{k}')=\mu(\mathsf{s}\mathsf{k})\cdot\mu(\mathsf{s}\mathsf{k}')$ for all $\mathsf{s}\mathsf{k},\mathsf{s}\mathsf{k}'\in\mathbb{H}$,
- $pk = \mu(sk)$ for all $(sk, pk) \leftarrow \text{KeyGen}(\lambda)$.

Example: DL setting (\mathbb{G}, p, g)

$$extstyle extstyle sk \leftarrow \mathbb{Z}_p, extstyle pk = g^{ extstyle sk} \qquad \qquad \mu: egin{cases} \mathbb{Z}_p
ightarrow \mathbb{G} \ k \mapsto g^k \end{cases}$$

7

Key-Homomorphic Signatures [DS19] (2/2)

Definition (Key-Homomorphic Signatures [DS19])

A signature scheme is called key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm **Adapt**, such that for all $\Delta \in \mathbb{H}$ and all $(pk, sk) \leftarrow \text{Gen}(\lambda)$, all messages $M \in \mathcal{M}$ and all σ with $\text{Ver}(pk, M, \sigma) = 1$ and $(pk', \sigma') \leftarrow \text{Adapt}(pk, M, \sigma, \Delta)$, it holds that

$$\Pr[\operatorname{Ver}(pk', M, \sigma') = 1] = 1 \land pk' = \mu(\Delta) \cdot pk.$$

Key-Homomorphic Signatures [DS19] (2/2)

Definition (Key-Homomorphic Signatures [DS19])

A signature scheme is called key-homomorphic, if it provides a secret key to public key homomorphism and an additional PPT algorithm **Adapt**, such that for all $\Delta \in \mathbb{H}$ and all $(pk, sk) \leftarrow \text{Gen}(\lambda)$, all messages $M \in \mathcal{M}$ and all σ with $\text{Ver}(pk, M, \sigma) = 1$ and $(pk', \sigma') \leftarrow \text{Adapt}(pk, M, \sigma, \Delta)$, it holds that

$$\Pr[\operatorname{Ver}(pk', M, \sigma') = 1] = 1 \land pk' = \mu(\Delta) \cdot pk.$$

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Real: pk_e

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Real: $pk_e = H(m)$

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation:

pke

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

We start from the well-known GPV signature scheme of Gentry et al. [GPV08].

Simulation: pk_e \cdot σ_e = H(m)

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Next:

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update:

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update : σ_e

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

11

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Update : Δ_{e+1} σ_e

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

Ver:

By using methods inspired by the lattice-based proxy re-signature approach of Fan and Liu [FL19], we obtain a candidate lattice-based US signature.

11

$$\operatorname{Sig:} \mathbf{m} \longrightarrow \mathbf{F}(\mathbf{k}, \cdot) \longrightarrow \sigma$$

$$\operatorname{Sig}: \mathbf{m} \longrightarrow \mathbf{F}(\mathbf{k}, \cdot) \longrightarrow \sigma$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Sig:
$$m \longrightarrow F(k_1, \cdot) \longrightarrow \sigma_1$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

$$\operatorname{Sig:} m \longrightarrow F(k_1,\cdot) \longrightarrow \sigma_1$$

Update:
$$m \longrightarrow F(\Delta_2, \cdot)$$

$$\Delta_2 = k_2 \oplus -k_1$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F \colon \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Definition (Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is a key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x)+F(k_2,x)=F(k_1\oplus k_2,x)$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x) + F(k_2,x) = F(k_1 \oplus k_2,x) + e$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x) + F(k_2,x) = F(k_1 \oplus k_2,x) + e$$

Definition (Almost Key-Homomorphic PRFs [Bon+13])

Let (\mathcal{K}, \oplus) , $(\mathcal{Y}, +)$ be groups. Then, a keyed function $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ is an almost key-homomorphic PRF if F is a secure PRF and for every key $k_1, k_2 \in \mathcal{K}$ and every input $x \in \mathcal{X}$, we have

$$F(k_1,x) + F(k_2,x) = F(k_1 \oplus k_2,x) + e$$

- Reduce UX-EUF-CMA to EUF-CMA of X for X $\in \{\text{MAC, S}\}$

- Reduce UX-EUF-CMA to EUF-CMA of X for $X \in \{MAC, S\}$
- · Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-,e^+]$):
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

- Reduce UX-EUF-CMA to EUF-CMA of X for $X \in \{MAC, S\}$
- · Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-,e^+[)$:
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

- Reduce UX-EUF-CMA to EUF-CMA of X for X ∈ {MAC, S}
- · Key insulation technique of Klooß et al. [KLR19] (i.e., region $[e^-, e^+]$):
 - No key inside the insulated region is corrupted
 - Tokens "on" the borders of the insulated region are not corrupted
 - All tokens inside the insulated region are corrupted

- Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)

- · Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)
- · Set keys for each epoch within the insulated region (using random $\Delta_i \leftarrow T$)

- · Associate the EUF-CMA challenger of Σ to an epoch within region (e.g., to e^-)
- · Set keys for each epoch within the insulated region (using random $\Delta_i \leftarrow T$)
- Use the EUF-CMA challenger of Σ and $\Sigma.Adapt$ algorithm to answer queries

Query: (m, e_5)

Query:
$$(m, e_5) \longrightarrow \Sigma.\mathcal{O}_{Sig}$$

Query:
$$(m, e_5) \longrightarrow \Sigma.\mathcal{O}_{Sig} \longrightarrow \Sigma.Adapt_{pk_3,\Delta_4}$$

 $\sigma_{\rm 6}^*$: Forgery

Overview and Instantiations

Updatable Signatures

Table 1: Overview of updatable signature schemes.

Scheme	Assumption	Model	UU-CMA	MD/MI	UB
BLS	co-CDH	RO	✓	MI	/
BLS	co-CDH	RO	✓	MD	✓
PS	P-LRSW	GGM	✓	MI	✓
PS	P-LRSW	GGM	✓	MD	✓
Waters	co-CDH	SM	✓	MD	✓
GPV ¹	SIS	RO	X	MI	Т

¹Provides US-EUF-CMA security only in a weakened model.

Updatable MACs

Table 2: Overview of updatable MAC schemes.

Scheme	Assumption	Model	UU-CMA	MD/MI	UB
BLMR (NPR) [Bon+13]	DDH	RO	✓	MD	✓
NPR	DDH	RO	✓	MI	✓
BEKS [Bon+20]	RLWE	RO	✓	MD	T
Kim [Kim20]	LWE	SM	✓	MD	T

Conclusion and Open Questions

 $\boldsymbol{\cdot}$ New cryptographic primitives, UMAC and US

- New cryptographic primitives, UMAC and US
- $\boldsymbol{\cdot}$ Generic constructions from KH-PRF and KH-Sig

- New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig
- Message independent constructions

- New cryptographic primitives, UMAC and US
- Generic constructions from KH-PRF and KH-Sig
- Message independent constructions
- Post-quantum instantiations from lattices

Open Questions

- Construction of lattice-based US with full security?
- Concrete bounds for UMAC from almost KH-PRFs?

Thank you for your attention!

(full version of the paper available on ePrint: ia.cr/2021/365)

Der Wissenschaftsfonds.

References

- [BLS01] D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: International conference on the theory and application of cryptology and information security. Springer. 2001, pp. 514–532.
- [Bon+13] D. Boneh et al. "Key homomorphic PRFs and their applications". In: *Annual Cryptology Conference*. Springer. 2013, pp. 410–428.
- [Bon+20] D. Boneh et al. "Improving speed and security in updatable encryption schemes". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2020, pp. 559–589.
- [DS19] D. Derler and D. Slamanig. "Key-homomorphic signatures: definitions and applications to multiparty signatures and non-interactive zero-knowledge". In: *Designs, Codes and Cryptography* 87.6 (2019), pp. 1373–1413.
- [FL19] X. Fan and F.-H. Liu. "Proxy re-encryption and re-signatures from lattices". In: International Conference on Applied Cryptography and Network Security. Springer. 2019, pp. 363–382.

- [GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: *Proceedings of the fortieth annual ACM symposium on Theory of computing*. 2008, pp. 197–206.
- [Kim20] S. Kim. "Key-homomorphic pseudorandom functions from LWE with small modulus". In: *Annual International Conference on the Theory and Applications of Cryptographic Techniques*. Springer. 2020, pp. 576–607.
- [KLR19] M. Klooß, A. Lehmann, and A. Rupp. "(R)CCA Secure Updatable Encryption with Integrity Protection". In: Advances in Cryptology EUROCRYPT 2019. Springer. 2019, pp. 68–99.
- [LT18] A. Lehmann and B. Tackmann. "Updatable encryption with post-compromise security". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2018, pp. 685–716.