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CONDITIONAL PAYMENTS

Conditional payments allow for rich set of o�-chain functionalities such as payment channel
networks, payment channel hubs, atomic swaps, etc. We can use a hash-time lock contract
(HTLC) for conditional payment.

Alice Bob

HTLC(Alice,Bob,1,y,t)
Alice pays Bob 1 BTC i� Bob shows some

x such that H(x) = y before time t

HTLC disadvantages: requires all cryptocurrencies to support the same hash function, using the
same hash value causes privacy issues, undesirable on-chain footprint, lack of fungibility, etc.
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ADAPTOR SIGNATURES

Adaptor signature (AS) extends ordinary signature with a compatible hard relation. It was first
introduced by Poelstra, and recently formalized by Aumayr et al. [AEE+20]. We can perform
conditional payment using adaptor signature.

Alice Bob

AS(Alice,Bob,1,Y ,t)
Alice pays Bob 1 BTC i� Bob shows

some y such that (Y; y) 2 R, for
a hard relation R, before time t

AS advantages: can leverage the existing signature of the cryptocurrency, low on-chain cost,
improved fungibility of transactions, etc.
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ADAPTOR SIGNATURES

Let Σ = (KGen; Sig; Ver) be a signature scheme and (Y; y) 2 R be a hard relation (y witness, Y
statement). An adaptor signature ΞΣ;R = (PreSig; PreVer; Adapt; Ext) works as follows:

(Y; y) 2 R (sk; pk)
pk; m Y; m

�̂  PreSig(sk; m; Y)

0=1 PreVer(pk; m; Y; �̂)

�  Adapt(�̂; y)

y  Ext(�; �̂; Y)

�̂

�
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PreSig is like a commitment, such that Alice with a valid witness can complete the signature.
Moreover, any valid (�; �̂) pair reveals the witness.
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ADAPTOR SIGNATURE PROPERTIES

• Unforgeability: infeasible to forge a signature even when pre-signature is given without
knowing a witness to R

• Pre-signature Adaptability: anyone that knows a witness to Y can complete a
pre-signature computed with Y

• Witness Extractability: any valid (pre-signature, signature) pair computed with the
statement Y reveals a witness to Y
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WHY POST-QUANTUM ADAPTOR SIGNATURE?

• Existing adaptor signatures (i.e., Schnorr and ECDSA) from [AEE+20] are broken with a
quantum computer due to Shor’s algorithm.

• Ongoing standardization process by NIST (only limited set of candidate post-quantum
assumptions).

Esgin et al. [EEE20] introduced lattice-based adaptor signature (LAS), which is based on
Module-SIS and Module-LWE problems.
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DRAWBACKS OF LAS

• Due to inherent knowledge gap in lattice-based ZK proofs, it requires an extended relation
R0 such that R � R0 (i.e., witnesses can have bigger norm in R0)

• Weak Pre-signature Adaptability: anyone that knows a y with (Y; y) 2 R can complete a
pre-signature conditioned on Y

- �  Adapt(�̂; y) where (Y; y) 2 R

• Witness Extractability: any given (pre-signature, signature) pair on the same statement Y
reveals a witness y0 such that (Y; y0) 2 R0

- y0=?  Ext(�; �̂; Y) such that (Y; y0) 2 R0

Drawback
Extracted witnesses do NOT guarantee adaptability (i.e., imperfect correctness). We can
guarantee correctness by using an expensive ZK proof that the witness has small norm (e.g.,
the proof from [ENS20] is 47KB).
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DRAWBACKS OF LAS

Some o�-chain applications (e.g., payment channel network of Malavolta et al. [MMS+19])
require several concatenated instances of pre-signatures (i.e., interleaved conditions).

PreSig(sk1;m1; Y1)! � � � ! PreSig(skn; mn; Yn);

for a hard relation R and statement/witness pairs (Yi; yi) 2 R, such that Yi+1 = f (Yi; zi+1) for a
function f and a random value zi+1. The privacy of these constructions require that each pair of
(Yi; yi) is indistinguishable from others.

• In group-based setting (e.g., Schnorr/ECDSA), we have that Y1 = gz1 and Yi+1 = Yi � gzi+1 , for
random scalars zi  $Zq.

• In lattice-based setting (e.g., LAS), we have that Y1 = Az1 and Yi+1 = Yi + Azi+1, for random
vectors zi  $Sn+`

1 (i.e., vectors of norm 1).

Drawback
In lattice-based setting the norm of the witness vectors is increasing along the path (i.e.,
kz1 + � � �+ zik � kz1k+ � � �+ kzik), which in turn hinders the privacy of applications.
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RESEARCH QUESTION

The only existing post-quantum adaptor signature LAS [EEE20] has an imperfect correctness and
hinders the privacy of o�-chain applications that use it. This naturally leads us to the following
question:

Can we construct an adaptor signature scheme that is correct and secure against quan-
tum adversaries, but preserves the privacy guarantees of the o�-chain applications built
on top of it?

Yes!
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GROUP ACTION

Definition
A group action on G of X is a function ? : G� X ! X, such that
• e ? x = x,
• (gh) ? x = g ? (h ? x),

for an identity element e of G, and g; h 2 G and x 2 X. Furthermore, we say that the group
action is one-way if given (x; y = g ? x), where g $ G, no e�icient attacker can find g.

Example
LetH be a group of prime order q with generator h. Consider ? : Z�q �H! Hwhere

z ? h := hz:

• Z�q is the “group” of action, andH is the “set” of action (althoughH is a group here).
• If DLog is hard overH, then ? : Z�q �H! H is one-way.
• The “set”H is a group, hence, one-wayness does NOT hold against quantum attackers.
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ISOGENY-BASED GROUP ACTION

We can construct an isogeny-based group action by letting G be the class group Cl(O) of an
orderO � Q(

p�D), and X be the set of elliptic curves with complex multiplication byO (as in
[CLM+18, BKV19]).

• For isogeny-based ? : G� X ! X, there is no meaningful multiplication x � x0.
• For DDH-based ? : Z�q �H! H, we can compute h � h0.

For a detailed exposition of cryptographic group actions refer to the work of Alamati et al.
[ADFMP20].

Notation
We uniquely represent elements of Cl(O) as [a] = ga for a 2 ZN, and N = #Cl(O), and
generator g. Thus, we can write [a]E for ga ? E, and have [a][b]E = [a + b]E.
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HARD PROBLEMS

Definition (Group Action Inversion Problem (GAIP) [DFG19])
Given two elliptic curves E and E0 over the same finite field and with End(E) = End(E0) = O,
find an ideal a � O such that E0 = a ? E.

The best known quantum algorithm to solve GAIP is Kuperberg’s algorithm for the hidden shi�
problem with subexponential complexity [Kup05].
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IDENTIfiCATION SCHEME FROM ISOGENIES

E0 is a designated base (starting) curve that is part of public parameters.

E0 Epk
[s]

Er

[r] [r][s]�1

b = 0 b = 1

Alice Bob

Er

b
[r] or [r][s]�1

12 / 23



IDENTIfiCATION SCHEME FROM ISOGENIES

E0 is a designated base (starting) curve that is part of public parameters.

E0 Epk
[s]

Er

[r]

[r][s]�1

b = 0 b = 1

Alice Bob

Er

b
[r] or [r][s]�1

12 / 23



IDENTIfiCATION SCHEME FROM ISOGENIES

E0 is a designated base (starting) curve that is part of public parameters.

E0 Epk
[s]

Er

[r]

[r][s]�1

b = 0 b = 1

Alice Bob

Er

b
[r] or [r][s]�1

12 / 23



IDENTIfiCATION SCHEME FROM ISOGENIES

E0 is a designated base (starting) curve that is part of public parameters.

E0 Epk
[s]

Er

[r] [r][s]�1

b = 0 b = 1

Alice Bob

Er

b
[r] or [r][s]�1

12 / 23



INCREASING SOUNDNESS

• The previous method only has
soundness of 1

2 .
• We can increase soundness to 1

2S�1 by
using S public keys (elliptic curves) along
with their quadratic twists.

• Applying Fiat-Shamir transform and
doing t = �

log2 S iterations to achieve
security level �, we obtain the signature
scheme CSI-FiSh [BKV19].

E0

E1

[s1]

E2[s2]

Ek

[sk]
...

Er

[r]

[r][s2]
�1
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ISOGENY ADAPTOR SIGNATURE (IAS)

• We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard
relation (for simplicity we consider the base scheme with challenge space f0; 1g).

• The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk; m; Y)
r $Zq; R := gr

e := H(pkkR � Ykm)

ŝ := r � e � sk mod q
return �̂ := (e; ŝ)

IAS

procedure PreSig(sk; m; EY )
r $ Cl(O); ER := [r]E0

e := H(pkkER � EYkm)

ŝ := r � e � sk mod N
return �̂ := (e; ŝ)

Problem
We cannot combine ER and EY as there is no meaningful operation between two elliptic curves
in isogeny-based group action.
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IAS

procedure PreSig(sk; m; EY )
r $ Cl(O); ER := [r]E0

e := H(pkkER � EYkm)
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Problem
We cannot combine ER and EY as there is no meaningful operation between two elliptic curves
in isogeny-based group action.

14 / 23



ISOGENY ADAPTOR SIGNATURE (IAS)

• We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard
relation (for simplicity we consider the base scheme with challenge space f0; 1g).

• The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk; m; Y)
r $Zq; R := gr

e := H(pkkR � Ykm)
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IAS

Solution
Randomize the statement EY with the group action of ER and prove the relation between ER

and EY in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

procedure PreSig(sk; m; EY )
r $ Cl(O); ER := [r]E0

ÊR := [r]EY = [r][y]E0 = [r + y]E0

Set x := fr j ER = [r]E0 ^ ÊR = [r]EYg
�  PNIZK(x; r)

e := H(pkkÊRkm)

ŝ := r � e � sk mod N
return �̂ := (e; ŝ; ÊR; �)

procedure PreVer(pk;m; EY ; �̂)
Parse pk as (E0; E1)

Parse �̂ as (e; ŝ; ÊR; �)

ER := [̂s]pke
Set x := fr j ER = [r]E0 ^ ÊR = [r]EYg
if �  VNIZK(x; �) 6= 1 then

return 0
e0 = H(pkkÊRkm)

return (e = e0)
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procedure PreVer(pk;m; EY ; �̂)
Parse pk as (E0; E1)

Parse �̂ as (e; ŝ; ÊR; �)
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IAS

Adapt and Ext algorithms are analogous to Schnorr-based adaptor signature construction from
[AEE+20].

procedure Adapt(�̂; y)
Parse �̂ as (e; ŝ; ÊR; �)

s := ŝ + y mod N
return � := (e; s)

procedure Ext(�; �̂; EY )
Parse � as (e; s) and �̂ as (e; ŝ; ÊR; �)

y0 := s� ŝ mod N
if (EY ; y0) 2 R return y0

else return?
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IAS

The drawbacks of the lattice adaptor signature (LAS) [EEE20] are:

• the extracted witnesses do not guarantee adaptability (i.e., imperfect correctness),
• privacy issues in o�-chain applications that require several concatenated instances of

pre-signatures of the form

PreSig(sk1; m1; Y1)! � � � ! PreSig(skn; mn; Yn);

with interleaved statements Yi.

The culprit in both of these drawbacks is the noisy nature of lattice-based schemes, which
causes a knowledge-gap and increases the norm of the vectors. Our isogeny-based construction
overcomes these issues due to the underlying group action structure.
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PERFORMANCE EVALUATION

• C implementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702
processor with 16 cores and 32GB RAM (time in seconds, size in bytes)

• Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S t jskj jpkj j�̂j j�j KGen Sig Ver PreSig PreVer Ext Adapt
21 56 16 128 19944 1880 0.05 0.24 0.23 3.59 3.55 0.005 0.005
22 38 16 256 19672 1286 0.06 0.16 0.16 2.75 2.68 0.005 0.005
23 28 16 512 19020 956 0.07 0.13 0.14 2.21 2.15 0.005 0.005
24 23 16 1024 19338 791 0.07 0.11 0.11 1.99 1.94 0.005 0.005
26 16 16 4096 18624 560 0.29 0.08 0.09 1.61 1.56 0.005 0.005
28 13 16 16384 18330 461 1.00 0.08 0.08 1.50 1.44 0.005 0.005

• S (public keys) and t (iterations) are inversely related to each other and control the running
time of KGen and Sig (along with public key and signature size).

• The main bottleneck of the construction is the expensive ZK proof used in pre-signatures.
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CONCLUSION

• IAS is an isogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and
proven secure in QROM.

• Unlike LAS [EEE20], due to a group action structure we can achieve perfect correctness and
do not hinder the privacy of the o�-chain applications that use adaptor signatures.

• Our technique to construct isogeny-based adaptor signature is generic enough to be
applicable to other isogeny-based signature schemes (e.g., SQISign [DFKL+20]).

• The future work is to improve the performance and obtain better security estimates
[BS20, Pei20].
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Thank you!

@erkantairi

https://twitter.com/erkantairi
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