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CONDITIONAL PAYMENTS

Conditional payments allow for rich set of off-chain functionalities such as payment channel
networks, payment channel hubs, atomic swaps, etc. We can use a hash-time lock contract

(HTLC) for conditional payment.
HTLC(Alice,Bob,1,y,t) I;)

——— Alice pays Bob 1 BTC iff Bob shows some ——— J
N x such that H(x) = y before time t ‘

Alice Bob
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Conditional payments allow for rich set of off-chain functionalities such as payment channel
networks, payment channel hubs, atomic swaps, etc. We can use a hash-time lock contract

(HTLC) for conditional payment.
HTLC(Alice,Bob,1,y,t) I;)

——— Alice pays Bob 1 BTC iff Bob shows some ——— J
N x such that H(x) = y before time t ‘

Alice Bob

HTLC disadvantages: requires all cryptocurrencies to support the same hash function, using the
same hash value causes privacy issues, undesirable on-chain footprint, lack of fungibility, etc.
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ADAPTOR SIGNATURES

Adaptor signature (AS) extends ordinary signature with a compatible hard relation. It was first
introduced by Poelstra, and recently formalized by Aumayr et al. [AEET20]. We can perform
conditional payment using adaptor signature.

2/23



ADAPTOR SIGNATURES

Adaptor signature (AS) extends ordinary signature with a compatible hard relation. It was first
introduced by Poelstra, and recently formalized by Aumayr et al. [AEE"20]. We can perform
conditional payment using adaptor signature.

AS(Alice,Bob,1,Y,t)
Alice pays Bob 1 BTC iff Bob shows
some y such that (Y,y) € R, for
\ a hard relation R, before time t

Alice Bob

AS advantages: can leverage the existing signature of the cryptocurrency, low on-chain cost,
improved fungibility of transactions, etc.
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ADAPTOR SIGNATURES

Let ¥ = (KGen, Sig, Ver) be a signature scheme and (Y, y) € R be a hard relation (y witness, Y
statement). An adaptor signature =5 r = (PreSig, PreVer, Adapt, Ext) works as follows:

p
5 ¢

(Y,)&) ER (sk, pk)

Y,m
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ADAPTOR SIGNATURES

Let X = (KGen, Sig, Ver) be a signature scheme and (Y, y) € R be a hard relation (y witness, Y
statement). An adaptor signature =y r = (PreSig, PreVer, Adapt, Ext) works as follows:

e
u b

(Y,y) €R (sk, pk)
kr m Y, m

& & <+ PreSig(sk,m,Y)

0/1 « PreVer(pk,m, Y, &)
o « Adapt(6,y) o

>

"y« Ext(0,8,Y)

PreSig is like a commitment, such that Alice with a valid witness can complete the signature.

Moreover, any valid (o, &) pair reveals the witness. 223



ADAPTOR SIGNATURE PROPERTIES

« Unforgeability: infeasible to forge a signature even when pre-signature is given without
knowing a witness to R

 Pre-signature Adaptability: anyone that knows a witness to Y can complete a
pre-signature computed with Y

« Witness Extractability: any valid (pre-signature, signature) pair computed with the
statement Y reveals a witness to Y
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WHY POST-QUANTUM ADAPTOR SIGNATURE?

- Existing adaptor signatures (i.e., Schnorr and ECDSA) from [AEE™"20] are broken with a
quantum computer due to Shor’s algorithm.

« Ongoing standardization process by NIST (only limited set of candidate post-quantum
assumptions).
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WHY POST-QUANTUM ADAPTOR SIGNATURE?

- Existing adaptor signatures (i.e., Schnorr and ECDSA) from [AEE™"20] are broken with a
quantum computer due to Shor’s algorithm.

« Ongoing standardization process by NIST (only limited set of candidate post-quantum
assumptions).

Esgin et al. [EEE20] introduced lattice-based adaptor signature (LAS), which is based on
Module-SIS and Module-LWE problem:s.
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DRAWBACKS OF LAS

« Dueto inherent knowledge gap in lattice-based ZK proofs, it requires an extended relation
R suchthatR C R’ (i.e., witnesses can have bigger norm in R')

+ Weak Pre-signature Adaptability: anyone that knows a y with (Y, y) € R can complete a
pre-signature conditioned on Y

- o + Adapt(é,y) where (Y,y) € R

« Witness Extractability: any given (pre-signature, signature) pair on the same statement Y
reveals a witness y’ such that (v, y’) € R’

- y'/L « Ext(o,8,Y) suchthat (V,y') € R’
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DRAWBACKS OF LAS

« Dueto inherent knowledge gap in lattice-based ZK proofs, it requires an extended relation
R’ such that R C R’ (i.e., witnesses can have bigger norm in R')
+ Weak Pre-signature Adaptability: anyone that knows a y with (Y, y) € R can complete a
pre-signature conditioned on Y
- o + Adapt(é,y) where (Y,y) € R
« Witness Extractability: any given (pre-signature, signature) pair on the same statement Y
reveals a witness y’ such that (v, y’) € R’
- y'/L « Ext(o,8,Y) suchthat (V,y') € R’

Drawback
Extracted witnesses do NOT guarantee adaptability (i.e., imperfect correctness). We can
guarantee correctness by using an expensive ZK proof that the witness has small norm (e.g.,

the proof from [ENS20] is 47KB).
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DRAWBACKS OF LAS

Some off-chain applications (e.g., payment channel network of Malavolta et al. [MMS™19])
require several concatenated instances of pre-signatures (i.e., interleaved conditions).

PreSig(sky, m, Y1) — --- — PreSig(sk,, mp, Ys),

for a hard relation R and statement/witness pairs (Y;, ;) € R, such thatY;;; = f(V;,z+1) fora
function f and a random value z;, ;. The privacy of these constructions require that each pair of
(Y3, i) is indistinguishable from others.
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require several concatenated instances of pre-signatures (i.e., interleaved conditions).

PreSig(sky, m, Y1) — --- — PreSig(sk,, mp, Ys),

for a hard relation R and statement/witness pairs (Y;, ;) € R, such thatY;;; = f(V;,z+1) fora
function f and a random value z;, ;. The privacy of these constructions require that each pair of
(Y3, i) is indistinguishable from others.

« In group-based setting (e.g., Schnorr/ECDSA), we have that Y; = g% and Y;; = Y; - g%+, for
random scalars z; < Zj.

« In lattice-based setting (e.g., LAS), we have that Y; = Az; and Y;; = V; + Az, 1, for random
vectors z; < S’l’” (i.e., vectors of norm 1).

Drawback
In lattice-based setting the norm of the witness vectors is increasing along the path (i.e.,
l|zs + - -+ zi|| < ||z1]| + - - - + ||zi]]), which in turn hinders the privacy of applications.
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RESEARCH QUESTION

The only existing post-quantum adaptor signature LAS [EEE20] has an imperfect correctness and
hinders the privacy of off-chain applications that use it. This naturally leads us to the following
question:

Can we construct an adaptor signature scheme that is correct and secure against quan-
tum adversaries, but preserves the privacy guarantees of the off-chain applications built
on top of it?
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RESEARCH QUESTION

The only existing post-quantum adaptor signature LAS [EEE20] has an imperfect correctness and
hinders the privacy of off-chain applications that use it. This naturally leads us to the following
question:

Can we construct an adaptor signature scheme that is correct and secure against quan-
tum adversaries, but preserves the privacy guarantees of the off-chain applications built
on top of it?

Yes!
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GROUP ACTION

Definition
A group action on G of X is a function x: G x X — X, such that
c exX =X,
o (gh)*xx = g* (h*x),
for an identity element e of G,and g, h € G and x € X. Furthermore, we say that the group
action is one-way if given (x,y = g % x), where g <+ G, no efficient attacker can find g.
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GROUP ACTION

Definition
A group action on G of X is a function x: G x X — X, such that
c exX =X,
o (gh)*xx = g* (h*x),
for an identity element e of G,and g, h € G and x € X. Furthermore, we say that the group
action is one-way if given (x,y = g % x), where g <+ G, no efficient attacker can find g.

Example
Let H be a group of prime order g with generator h. Consider x: Z7 x H — H where

zxh:=h.
* Zg is the “group” of action, and H is the “set” of action (although H is a group here).
« If DLog is hard over Hj, then x: Z7 x H — His one-way.

« The “set” H is a group, hence, one-wayness does NOT hold against quantum attackers.
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ISOGENY-BASED GROUP ACTION

We can construct an isogeny-based group action by letting G be the class group Cl(O) of an
order O C Q(+/—D), and X be the set of elliptic curves with complex multiplication by O (as in
[CLMT18, BKV19]).
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We can construct an isogeny-based group action by letting G be the class group Cl(O) of an

order O C Q(+/—D), and X be the set of elliptic curves with complex multiplication by O (as in
[CLMT18, BKV19]).

« Forisogeny-based x: G x X — X, there is no meaningful multiplication x - x'.

« For DDH-based x: Zz x H — H, we can compute h - h'.

For a detailed exposition of cryptographic group actions refer to the work of Alamati et al.
[ADFMP20].
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ISOGENY-BASED GROUP ACTION

We can construct an isogeny-based group action by letting G be the class group Cl(O) of an
order O C Q(+/—D), and X be the set of elliptic curves with complex multiplication by O (as in

[CLMT18, BKV19]).

« Forisogeny-based x: G x X — X, there is no meaningful multiplication x - x'.

« For DDH-based x: Zz x H — H, we can compute h - h'.
For a detailed exposition of cryptographic group actions refer to the work of Alamati et al.
[ADFMP20].

Notation

We uniquely represent elements of Cl(O) as [a] = g° fora € Zy, and N = #Cl(O), and
generator g. Thus, we can write [a]E for g? x E, and have [a][b]E = [a + b]E.
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HARD PROBLEMS

Definition (Group Action Inversion Problem (GAIP) [DFG19])
Given two elliptic curves E and E’ over the same finite field and with End(E) = End(E’) = O,
find anideala C O suchthatE’ = ax E.
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HARD PROBLEMS

Definition (Group Action Inversion Problem (GAIP) [DFG19])
Given two elliptic curves E and E’ over the same finite field and with End(E) = End(E’) = O,
find anideala C O suchthatE’ = ax E.

The best known quantum algorithm to solve GAIP is Kuperberg’s algorithm for the hidden shift
problem with subexponential complexity [Kup05].
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IDENTIfiCATION SCHEME FROM ISOGENIES

Eo is a designated base (starting) curve that is part of public parameters.

Eo

Alice
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Eo is a designated base (starting) curve that is part of public parameters.

E
[r]
: [s]
E
b
\
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IDENTIfiCATION SCHEME FROM ISOGENIES

Eo is a designated base (starting) curve that is part of public parameters.

b=0 E, b=1

Eo
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INCREASING SOUNDNESS

« The previous method only has E;
soundness of 1.

« We can increase soundness to 5 by
using S public keys (elliptic curves) along \
with their quadratic twists. Eo (5] S
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INCREASING SOUNDNESS

« The previous method only has Ey
soundness of 1.

« We can increase soundness to Til by

using S public keys (elliptic curves) along [s2] Ez\
with their quadratic twists. Eo o] : \\\
« Applying Fiat-Shamir transform and ‘\\ \ E \
doingt = Iogis iterations to achieve Y g ; (lsa]
2 \ 2
security level A, we obtain the signature ' )
scheme CSI-FiSh [BKV19]. [
S o
b Er
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ISOGENY ADAPTOR SIGNATURE (IAS)

« We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard
relation (for simplicity we consider the base scheme with challenge space {0, 1}).

« The main technical challenge appears in PreSig algorithm.
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ISOGENY ADAPTOR SIGNATURE (IAS)

« We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard
relation (for simplicity we consider the base scheme with challenge space {0, 1}).

« The main technical challenge appears in PreSig algorithm.

Schnorr IAS
| |
procedure PreSig(sk, m, Y) procedure PreSig(sk, m| Ey)
r<sZq,R:=¢g" r«sCl(O), Eg := [r]Eo
e := H(pk||R - Y||m) e := H(pk| Eg - Ey||m)
S:=r—e-skmodgqg S:=r—e-skmodN
return g := (e,3) return g := (e,3)
Problem

We cannot combine Eg and Ey as there is no meaningful operation between two elliptic curves
in isogeny-based group action.
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Solution

Randomize the statement Ey with the group action of E; and prove the relation between Ep
and Ey in ZK (i.e., a DH-tuple proof for isogenies [CS20]).
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Solution

Randomize the statement Ey with the group action of E; and prove the relation between Ep
and Ey in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

procedure PreSig(sk, m, Ey) procedure PreVer(pk, m, Ey, 7)
r«sCl(O); Er := [r]Eo Parse pk as (Eo, £1)
Er :=[rEv = [r]ly]Eo = [r + y]Eo Parse & as (e, $, Eg, )
Setx :={r | Er = [r]E0 A Eg = [r]Ev} Er = [S]pk, )
7 < Pnizk(X, 1) Setx :={r| Er = [r]E0 N Egr = [r]Ev}
e := H(pk||Eg||m) if T < Vnizk(x, 7) # 1 then
§:=r—e-skmodN return 0
return 6 := (e, 3, Eg, ) e’ = H(pk||Eg||m)

return (e = ¢')
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Adapt and Ext algorithms are analogous to Schnorr-based adaptor signature construction from

[AEET20].
procedure Adapt(d, y) procedure Ext(c, 6, Ey)
Parse & as (e, $, Eg, ) Parse o as (e, s) and & as (e, $, Eg, 7)
s:=5+ymodN y' :=s—3SmodN
return o := (e, s) if (Ev,y') € Rreturny’

else return L
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The drawbacks of the lattice adaptor signature (LAS) [EEE20] are:

« the extracted witnesses do not guarantee adaptability (i.e., imperfect correctness),

« privacy issues in off-chain applications that require several concatenated instances of
pre-signatures of the form

PreSig(sk,, m1, Y1) — - -+ — PreSig(sk,, mp, Y,),

with interleaved statements Y;.
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The drawbacks of the lattice adaptor signature (LAS) [EEE20] are:

« the extracted witnesses do not guarantee adaptability (i.e., imperfect correctness),

« privacy issues in off-chain applications that require several concatenated instances of
pre-signatures of the form

PreSig(sk,, m1, Y1) — - -+ — PreSig(sk,, mp, Y,),

with interleaved statements Y;.

The culprit in both of these drawbacks is the noisy nature of lattice-based schemes, which
causes a knowledge-gap and increases the norm of the vectors. Our isogeny-based construction
overcomes these issues due to the underlying group action structure.

17/23



PERFORMANCE EVALUATION

« Cimplementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702
processor with 16 cores and 32GB RAM (time in seconds, size in bytes)

« Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S t ‘|sk| |pk| |G| lo| ‘KGen Sig  Ver PreSig PreVer Ext Adapt

2! 56| 16 128 19944 1880 | 0.05 0.24 0.23 3159 3.55 0.005 0.005
22 38 16 256 19672 1286 | 0.06 0.16 0.16 275 2.68  0.005 0.005
22 28 16 512 19020 956 0.07 013 014 221 2.15  0.005 0.005
24 23 16 1024 19338 791 0.07 011 0.11 1.99 1.94  0.005 0.005
2% 16 16 4096 18624 560 0.29 0.08 0.09 l1.61 1.56  0.005 0.005
22 13 16 16384 18330 461 1.00 0.08 0.08 1.50 1.44  0.005 0.005
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processor with 16 cores and 32GB RAM (time in seconds, size in bytes)

« Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S t ‘|sk| |pk| |G| lo| ‘KGen Sig  Ver PreSig PreVer Ext Adapt

(2! [56] 16 128 19944 1880 || 0.05 | 0.24 0.23 3159 3.55 0.005 0.005
22 |38 16 256 19672 1286 || 0.06 |0.16| 0.16 275 2.68  0.005 0.005
2° |28 16 512 19020 956 0.07 |0.13| 014 221 2.15  0.005 0.005
24 |23 16 1024 19338 791 0.07 |0.11| 0.11 1.99 1.94  0.005 0.005
2° | 16/| 16 4096 18624 560 0.29 |0.08, 0.09 161 1.56  0.005 0.005
28 |13 16 16384 18330 461 1.00 |0.08 0.08 1.50 1.44  0.005 0.005

» S (public keys) and t (iterations) are inversely related to each other and control the running
time of KGen and Sig (along with public key and signature size).
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PERFORMANCE EVALUATION

« Cimplementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702
processor with 16 cores and 32GB RAM (time in seconds, size in bytes)

« Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S t ‘|sk| |pk| |G| lo| ‘KGen Sig  Ver PreSig PreVer Ext Adapt

2! 56| 16 128 19944 | 1880 | 0.05 | 0.24 0.23 359 3.55 0.005 0.005
22 38 16 256 19672 | 1286/ | 0.06 | 0.16| 0.16 |2.75 2.68  0.005 0.005
22 28 16 512 19020 956 0.07 |0.13| 014 |221 2.15  0.005 0.005
2423 16 1024 | 19338 791 0.07 0.1, 0.11 1.99 1.94  0.005 0.005
2% 16 16 4096 | 18624 560 0.29 |0.08, 0.09 1.61 1.56  0.005 0.005
22 13 16 16384 | 18330 461 1.00 |0.08; 0.08 | 1.50 1.44  0.005 0.005

» S (public keys) and t (iterations) are inversely related to each other and control the running
time of KGen and Sig (along with public key and signature size).

« The main bottleneck of the construction is the expensive ZK proof used in pre-signatures.
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https://github.com/etairi/Adaptor-CSI-FiSh
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« IASis anisogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and
proven secure in QROM.

« Unlike LAS [EEE20], due to a group action structure we can achieve perfect correctness and
do not hinder the privacy of the off-chain applications that use adaptor signatures.

« Our technique to construct isogeny-based adaptor signature is generic enough to be
applicable to other isogeny-based signature schemes (e.g., SQISign [DFKL™20]).

« The future work is to improve the performance and obtain better security estimates
[BS20, Pei20].
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https://twitter.com/erkantairi
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