POST-QUANTUM ADAPTOR SIGNATURE FOR PRIVACY-PRESERVING OFF-CHAIN PAYMENTS

Erkan Tairi¹ Pedro Moreno-Sanchez² Matteo Maffei¹

Financial Cryptography and Data Privacy 2021

¹TU Wien

²IMDEA Software Institute

Der Wissenschaftsfonds.

Conditional payments allow for rich set of off-chain functionalities such as payment channel networks, payment channel hubs, atomic swaps, etc. We can use a hash-time lock contract (HTLC) for conditional payment.

Conditional payments allow for rich set of off-chain functionalities such as payment channel networks, payment channel hubs, atomic swaps, etc. We can use a hash-time lock contract (HTLC) for conditional payment.

HTLC disadvantages: requires all cryptocurrencies to support the same hash function, using the same hash value causes privacy issues, undesirable on-chain footprint, lack of fungibility, etc.

Adaptor signature (AS) extends ordinary signature with a compatible hard relation. It was first introduced by Poelstra, and recently formalized by Aumayr et al. [AEE⁺20]. We can perform conditional payment using adaptor signature.

Adaptor signature (AS) extends ordinary signature with a compatible hard relation. It was first introduced by Poelstra, and recently formalized by Aumayr et al. [AEE⁺20]. We can perform conditional payment using adaptor signature.

AS advantages: can leverage the existing signature of the cryptocurrency, low on-chain cost, improved fungibility of transactions, etc.

Let $\Sigma = (KGen, Sig, Ver)$ be a signature scheme and $(Y, y) \in R$ be a hard relation (y witness, Y statement). An adaptor signature $\Xi_{\Sigma,R} = (PreSig, PreVer, Adapt, Ext)$ works as follows:

PreSig is like a **commitment**, such that Alice with a valid witness can **complete** the signature. Moreover, any valid $(\sigma, \hat{\sigma})$ pair **reveals** the witness.

- **Unforgeability:** infeasible to forge a signature even when pre-signature is given without knowing a witness to *R*
- **Pre-signature Adaptability:** anyone that knows a witness to *Y* can complete a pre-signature computed with *Y*
- Witness Extractability: any valid (pre-signature, signature) pair computed with the statement *Y* reveals a witness to *Y*

- Existing adaptor signatures (i.e., Schnorr and ECDSA) from [AEE⁺20] are broken with a quantum computer due to Shor's algorithm.
- Ongoing standardization process by NIST (only limited set of candidate post-quantum assumptions).

- Existing adaptor signatures (i.e., Schnorr and ECDSA) from [AEE⁺20] are broken with a quantum computer due to Shor's algorithm.
- Ongoing standardization process by NIST (only limited set of candidate post-quantum assumptions).

Esgin et al. [EEE20] introduced lattice-based adaptor signature (LAS), which is based on Module-SIS and Module-LWE problems.

- Due to inherent **knowledge gap** in lattice-based ZK proofs, it requires an **extended** relation R' such that $R \subseteq R'$ (i.e., witnesses can have bigger norm in R')
- Weak Pre-signature Adaptability: anyone that knows a y with $(Y, y) \in R$ can complete a pre-signature conditioned on Y
 - $\sigma \leftarrow \operatorname{Adapt}(\hat{\sigma}, y)$ where $(Y, y) \in R$
- Witness Extractability: any given (pre-signature, signature) pair on the same statement Y reveals a witness y' such that $(Y, y') \in \mathbb{R}'$

- $y'/\bot \leftarrow \operatorname{Ext}(\sigma, \hat{\sigma}, Y)$ such that $(Y, y') \in \mathbb{R}'$

- Due to inherent **knowledge gap** in lattice-based ZK proofs, it requires an **extended** relation R' such that $R \subseteq R'$ (i.e., witnesses can have bigger norm in R')
- Weak Pre-signature Adaptability: anyone that knows a y with $(Y, y) \in R$ can complete a pre-signature conditioned on Y

- $\sigma \leftarrow \operatorname{Adapt}(\hat{\sigma}, y)$ where $(Y, y) \in R$

• Witness Extractability: any given (pre-signature, signature) pair on the same statement Y reveals a witness y' such that $(Y, y') \in \mathbb{R}'$

- $y'/\bot \leftarrow \operatorname{Ext}(\sigma, \hat{\sigma}, Y)$ such that $(Y, y') \in \mathbb{R}'$

Drawback

Extracted witnesses do **NOT** guarantee adaptability (i.e., imperfect correctness). We can guarantee correctness by using an expensive ZK proof that the witness has small norm (e.g., the proof from [ENS20] is 47KB).

Some off-chain applications (e.g., payment channel network of Malavolta et al. [MMS⁺19]) require several concatenated instances of pre-signatures (i.e., interleaved conditions).

 $\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),$

for a hard relation R and statement/witness pairs $(Y_i, y_i) \in R$, such that $Y_{i+1} = f(Y_i, z_{i+1})$ for a function f and a random value z_{i+1} . The privacy of these constructions require that each pair of (Y_i, y_i) is indistinguishable from others.

Some off-chain applications (e.g., payment channel network of Malavolta et al. [MMS⁺19]) require several concatenated instances of pre-signatures (i.e., interleaved conditions).

```
\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),
```

for a hard relation R and statement/witness pairs $(Y_i, y_i) \in R$, such that $Y_{i+1} = f(Y_i, z_{i+1})$ for a function f and a random value z_{i+1} . The privacy of these constructions require that each pair of (Y_i, y_i) is indistinguishable from others.

• In group-based setting (e.g., Schnorr/ECDSA), we have that $Y_1 = g^{z_1}$ and $Y_{i+1} = Y_i \cdot g^{z_{i+1}}$, for random scalars $z_i \leftarrow \mathbb{Z}_q$.

Some off-chain applications (e.g., payment channel network of Malavolta et al. [MMS⁺19]) require several concatenated instances of pre-signatures (i.e., interleaved conditions).

```
\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),
```

for a hard relation R and statement/witness pairs $(Y_i, y_i) \in R$, such that $Y_{i+1} = f(Y_i, z_{i+1})$ for a function f and a random value z_{i+1} . The privacy of these constructions require that each pair of (Y_i, y_i) is indistinguishable from others.

- In group-based setting (e.g., Schnorr/ECDSA), we have that $Y_1 = g^{z_1}$ and $Y_{i+1} = Y_i \cdot g^{z_{i+1}}$, for random scalars $z_i \leftarrow \mathbb{Z}_q$.
- In lattice-based setting (e.g., LAS), we have that Y₁ = Az₁ and Y_{i+1} = Y_i + Az_{i+1}, for random vectors z_i ←_s S₁^{n+ℓ} (i.e., vectors of norm 1).

Some off-chain applications (e.g., payment channel network of Malavolta et al. [MMS⁺19]) require several concatenated instances of pre-signatures (i.e., interleaved conditions).

 $\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),$

for a hard relation R and statement/witness pairs $(Y_i, y_i) \in R$, such that $Y_{i+1} = f(Y_i, z_{i+1})$ for a function f and a random value z_{i+1} . The privacy of these constructions require that each pair of (Y_i, y_i) is indistinguishable from others.

- In group-based setting (e.g., Schnorr/ECDSA), we have that $Y_1 = g^{z_1}$ and $Y_{i+1} = Y_i \cdot g^{z_{i+1}}$, for random scalars $z_i \leftarrow \mathbb{Z}_q$.
- In lattice-based setting (e.g., LAS), we have that Y₁ = Az₁ and Y_{i+1} = Y_i + Az_{i+1}, for random vectors z_i ←_s S₁^{n+ℓ} (i.e., vectors of norm 1).

Drawback

In lattice-based setting the norm of the witness vectors is increasing along the path (i.e., $||z_1 + \cdots + z_i|| \le ||z_1|| + \cdots + ||z_i||$), which in turn hinders the privacy of applications.

The only existing post-quantum adaptor signature LAS [EEE20] has an imperfect correctness and hinders the privacy of off-chain applications that use it. This naturally leads us to the following question:

Can we construct an adaptor signature scheme that is correct and secure against quantum adversaries, but preserves the privacy guarantees of the off-chain applications built on top of it? The only existing post-quantum adaptor signature LAS [EEE20] has an imperfect correctness and hinders the privacy of off-chain applications that use it. This naturally leads us to the following question:

Can we construct an adaptor signature scheme that is correct and secure against quantum adversaries, but preserves the privacy guarantees of the off-chain applications built on top of it?

Yes!

GROUP ACTION

Definition

A **group action** on *G* of *X* is a function \star : $G \times X \rightarrow X$, such that

- $e \star x = x$,
- $(gh) \star x = g \star (h \star x),$

for an identity element *e* of *G*, and *g*, $h \in G$ and $x \in X$. Furthermore, we say that the group action is **one-way** if given $(x, y = g \star x)$, where $g \leftarrow G$, no efficient attacker can find *g*.

GROUP ACTION

Definition

A **group action** on *G* of *X* is a function \star : $G \times X \rightarrow X$, such that

- $e \star x = x$,
- $(gh) \star x = g \star (h \star x),$

for an identity element *e* of *G*, and *g*, $h \in G$ and $x \in X$. Furthermore, we say that the group action is **one-way** if given $(x, y = g \star x)$, where $g \leftarrow G$, no efficient attacker can find *g*.

Example

Let \mathbb{H} be a group of prime order q with generator h. Consider $\star : \mathbb{Z}_q^* \times \mathbb{H} \to \mathbb{H}$ where

$$z \star h := h^z$$
.

- \mathbb{Z}_q^* is the "group" of action, and \mathbb{H} is the "set" of action (although \mathbb{H} is a group here).
- If DLog is hard over \mathbb{H} , then $\star \colon \mathbb{Z}_q^* \times \mathbb{H} \to \mathbb{H}$ is one-way.
- The "set" \mathbbm{H} is a group, hence, one-wayness does NOT hold against quantum attackers.

We can construct an isogeny-based group action by letting *G* be the class group $Cl(\mathcal{O})$ of an order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$, and *X* be the set of elliptic curves with complex multiplication by \mathcal{O} (as in [CLM⁺18, BKV19]).

We can construct an isogeny-based group action by letting *G* be the class group $Cl(\mathcal{O})$ of an order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$, and *X* be the set of elliptic curves with complex multiplication by \mathcal{O} (as in [CLM⁺18, BKV19]).

- For isogeny-based $\star: G \times X \to X$, there is no meaningful multiplication $x \cdot x'$.
- For DDH-based $\star : \mathbb{Z}_a^* \times \mathbb{H} \to \mathbb{H}$, we can compute $h \cdot h'$.

For a detailed exposition of cryptographic group actions refer to the work of Alamati et al. [ADFMP20].

We can construct an isogeny-based group action by letting *G* be the class group $Cl(\mathcal{O})$ of an order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$, and *X* be the set of elliptic curves with complex multiplication by \mathcal{O} (as in [CLM⁺18, BKV19]).

- For isogeny-based $\star: G \times X \to X$, there is no meaningful multiplication $x \cdot x'$.
- For DDH-based $\star : \mathbb{Z}_a^* \times \mathbb{H} \to \mathbb{H}$, we can compute $h \cdot h'$.

For a detailed exposition of cryptographic group actions refer to the work of Alamati et al. [ADFMP20].

Notation

We uniquely represent elements of $Cl(\mathcal{O})$ as $[a] = \mathfrak{g}^a$ for $a \in \mathbb{Z}_N$, and $N = \#Cl(\mathcal{O})$, and generator \mathfrak{g} . Thus, we can write [a]E for $\mathfrak{g}^a \star E$, and have [a][b]E = [a+b]E.

Definition (Group Action Inversion Problem (GAIP) [DFG19])

Given two elliptic curves *E* and *E'* over the same finite field and with End(E) = End(E') = O, find an ideal $\mathfrak{a} \subset O$ such that $E' = \mathfrak{a} \star E$.

Definition (Group Action Inversion Problem (GAIP) [DFG19])

Given two elliptic curves *E* and *E'* over the same finite field and with End(E) = End(E') = O, find an ideal $\mathfrak{a} \subset O$ such that $E' = \mathfrak{a} \star E$.

The best known quantum algorithm to solve GAIP is Kuperberg's algorithm for the hidden shift problem with subexponential complexity [Kup05].

IDENTIFICATION SCHEME FROM ISOGENIES

IDENTIFICATION SCHEME FROM ISOGENIES

IDENTIFICATION SCHEME FROM ISOGENIES

- The previous method only has soundness of $\frac{1}{2}$.
- We can increase soundness to $\frac{1}{2S-1}$ by using S public keys (elliptic curves) along with their quadratic twists.

- The previous method only has soundness of $\frac{1}{2}$.
- We can increase soundness to $\frac{1}{2S-1}$ by using *S* public keys (elliptic curves) along with their quadratic twists.
- Applying Fiat-Shamir transform and doing $t = \frac{\lambda}{\log_2 S}$ iterations to achieve security level λ , we obtain the signature scheme CSI-FiSh [BKV19].

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk, m, Y) $r \leftarrow \mathbb{Z}_q, R := g^r$ $e := H(pk||R \cdot Y||m)$ $\hat{s} := r - e \cdot sk \mod q$ **return** $\hat{\sigma} := (e, \hat{s})$

IAS

procedure PreSig(sk, m, E_Y) $r \leftarrow s Cl(\mathcal{O}), E_R := [r]E_0$ $e := H(pk||E_R \cdot E_Y||m)$ $\hat{s} := r - e \cdot sk \mod N$ **return** $\hat{\sigma} := (e, \hat{s})$

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk, m, Y) $\begin{array}{c} r \leftarrow \mathbb{Z}_q, R := g^r \\ e := H(pk||R \cdot Y||m) \\ \hat{s} := r - e \cdot sk \mod q \\ return \hat{\sigma} := (e, \hat{s}) \end{array}$

IAS

procedure PreSig(sk, m, E_Y) $r \leftarrow s Cl(\mathcal{O}), E_R := [r]E_0$ $e := H(pk||E_R \cdot E_Y||m)$ $\hat{s} := r - e \cdot sk \mod N$ **return** $\hat{\sigma} := (e, \hat{s})$

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk, m, Y) $r \leftarrow \mathbb{Z}_q, R := g^r$ $e := H(pk||R \cdot Y||m)$ $\hat{\mathbb{S}} := r - e \cdot \text{sk mod } q$ **return** $\hat{\sigma} := (e, \hat{\mathbb{S}})$

IAS

procedure PreSig(sk, m, E_Y) $r \leftarrow_s Cl(\mathcal{O}), E_R := [r]E_0$ $e := H(pk||E_R \cdot E_Y||m)$ $\hat{s} := r - e \cdot sk \mod N$ **return** $\hat{\sigma} := (e, \hat{s})$

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk, m **Y**) $r \leftarrow s \mathbb{Z}_q, R := g^r$ $e := H(pk \boxed{R \cdot Y} m)$ $\hat{s} := r - e \cdot sk \mod q$ **return** $\hat{\sigma} := (e, \hat{s})$

IAS

procedure PreSig(sk, $m E_Y$) $r \leftarrow_s Cl(\mathcal{O}), E_R := [r]E_0$ $e := H(pk E_R \cdot E_Y)m)$ $\hat{s} := r - e \cdot sk \mod N$ **return** $\hat{\sigma} := (e, \hat{s})$

- We can construct an adaptor signature from CSI-FiSh [BKV19] using GAIP as the hard relation (for simplicity we consider the base scheme with challenge space {0, 1}).
- The main technical challenge appears in PreSig algorithm.

Schnorr

procedure PreSig(sk, m, Y) $r \leftarrow \mathbb{Z}_q, R := g^r$ $e := H(pk||R \cdot Y||m)$ $\hat{s} := r - e \cdot sk \mod q$ **return** $\hat{\sigma} := (e, \hat{s})$

Problem

We cannot combine E_R and E_Y as there is no meaningful operation between two elliptic curves in isogeny-based group action.

IAS

procedure PreSig(sk, $m E_Y$) $r \leftarrow_s Cl(\mathcal{O}), E_R := [r]E_0$ $e := H(pk E_R \cdot E_Y)m)$ $\hat{s} := r - e \cdot sk \mod N$ **return** $\hat{\sigma} := (e, \hat{s})$

Randomize the statement E_Y with the group action of E_R and prove the relation between E_R and E_Y in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

Randomize the statement E_Y with the group action of E_R and prove the relation between E_R and E_Y in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

```
procedure PreSig(sk, m, E<sub>Y</sub>)
```

```
r \leftarrow_{s} \operatorname{Cl}(\mathcal{O}); E_{R} := [r]E_{0}

\hat{E}_{R} := [r]E_{Y} = [r][y]E_{0} = [r+y]E_{0}

Set x := \{r \mid E_{R} = [r]E_{0} \land \hat{E}_{R} = [r]E_{Y}\}

\pi \leftarrow \operatorname{P}_{\operatorname{NIZK}}(x, r)

e := H(\operatorname{pk} || \hat{E}_{R} || m)

\hat{s} := r - e \cdot \operatorname{sk mod} N

return \hat{\sigma} := (e, \hat{s}, \hat{E}_{R}, \pi)
```

Randomize the statement E_Y with the group action of E_R and prove the relation between E_R and E_Y in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

```
procedure PreSig(sk, m, E<sub>Y</sub>)
```

```
r \leftarrow_{s} \operatorname{Cl}(\mathcal{O}); E_{R} := [r]E_{0}
\hat{E}_{R} := [r]E_{Y} = [r][y]E_{0} = [r+y]E_{0}
Set x := \{r \mid E_{R} = [r]E_{0} \land \hat{E}_{R} = [r]E_{Y}\}
\pi \leftarrow \mathsf{P}_{\mathsf{NIZK}}(x, r)
e := H(\mathsf{pk} \mid \hat{E}_{R} \mid m)
\hat{s} := r - e \cdot \mathsf{sk} \mod N
return \hat{\sigma} := (e, \hat{s}, \hat{E}_{R}, \pi)
```

Randomize the statement E_Y with the group action of E_R and prove the relation between E_R and E_Y in ZK (i.e., a DH-tuple proof for isogenies [CS20]).

```
procedure PreSig(sk, m, E<sub>Y</sub>)
```

```
r \leftarrow_{s} \operatorname{Cl}(\mathcal{O}); E_{R} := [r]E_{0}

\hat{E}_{R} := [r]E_{Y} = [r][y]E_{0} = [r+y]E_{0}

Set x := \{r \mid E_{R} = [r]E_{0} \land \hat{E}_{R} = [r]E_{Y}\}

\pi \leftarrow \operatorname{P}_{\operatorname{NIZK}}(x, r)

e := H(\operatorname{pk} ||\hat{E}_{R}||m)

\hat{s} := r - e \cdot \operatorname{sk \ mod} N

return \hat{\sigma} := (e, \hat{s}, \hat{E}_{R}, \pi)
```

procedure PreVer(pk, m, E_Y , $\hat{\sigma}$) Parse pk as (E_0, E_1) Parse $\hat{\sigma}$ as $(e, \hat{s}, \hat{E}_R, \pi)$ $E_R := [\hat{s}]pk_e$ Set $x := \{r \mid E_R = [r]E_0 \land \hat{E}_R = [r]E_Y\}$ if $\pi \leftarrow V_{\text{NIZK}}(x, \pi) \neq 1$ then return 0 $e' = H(pk||\hat{E}_R||m)$ return (e = e') Adapt and Ext algorithms are analogous to Schnorr-based adaptor signature construction from [AEE⁺20].

```
procedure Adapt(\hat{\sigma}, y)
Parse \hat{\sigma} as (e, \hat{s}, \hat{E}_R, \pi)
s := \hat{s} + y \mod N
return \sigma := (e, s)
```

procedure Ext(σ , $\hat{\sigma}$, E_Y) Parse σ as (e, s) and $\hat{\sigma}$ as $(e, \hat{s}, \hat{E}_R, \pi)$ $y' := s - \hat{s} \mod N$ **if** $(E_Y, y') \in R$ **return** y'**else return** \bot The drawbacks of the lattice adaptor signature (LAS) [EEE20] are:

- the extracted witnesses do not guarantee adaptability (i.e., imperfect correctness),
- privacy issues in off-chain applications that require several concatenated instances of pre-signatures of the form

$$\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),$$

with interleaved statements Y_i .

The drawbacks of the lattice adaptor signature (LAS) [EEE20] are:

- the extracted witnesses do not guarantee adaptability (i.e., imperfect correctness),
- privacy issues in off-chain applications that require several concatenated instances of pre-signatures of the form

$$\operatorname{PreSig}(\operatorname{sk}_1, m_1, Y_1) \rightarrow \cdots \rightarrow \operatorname{PreSig}(\operatorname{sk}_n, m_n, Y_n),$$

with interleaved statements Y_i .

The culprit in both of these drawbacks is the noisy nature of lattice-based schemes, which causes a knowledge-gap and increases the norm of the vectors. Our isogeny-based construction overcomes these issues due to the underlying **group action** structure.

PERFORMANCE EVALUATION

- C implementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702 processor with 16 cores and 32GB RAM (time in seconds, size in bytes)
- Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S	t	sk	pk	$\hat{\sigma}$	σ	KGen	Sig	Ver	PreSig	PreVer	Ext	Adapt
2 ¹	56	16	128	19944	1880	0.05	0.24	0.23	3.59	3.55	0.005	0.005
2 ²	38	16	256	19672	1286	0.06	0.16	0.16	2.75	2.68	0.005	0.005
2 ³	28	16	512	19020	956	0.07	0.13	0.14	2.21	2.15	0.005	0.005
2 ⁴	23	16	1024	19338	791	0.07	0.11	0.11	1.99	1.94	0.005	0.005
2 ⁶	16	16	4096	18624	560	0.29	0.08	0.09	1.61	1.56	0.005	0.005
2 ⁸	13	16	16384	18330	461	1.00	0.08	0.08	1.50	1.44	0.005	0.005

Performance Evaluation

- C implementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702 processor with 16 cores and 32GB RAM (time in seconds, size in bytes)
- Source code: https://github.com/etairi/Adaptor-CSI-FiSh

	S	t	sk	pk	$ \hat{\sigma} $	σ	KGen	Sig	Ver	PreSig	PreVer	Ext	Adapt
1	2 ¹	56	16	128	19944	1880	0.05	0.24	0.23	3.59	3.55	0.005	0.005
	2 ²	38	16	256	19672	1286	0.06	0.16	0.16	2.75	2.68	0.005	0.005
	2 ³	28	16	512	19020	956	0.07	0.13	0.14	2.21	2.15	0.005	0.005
	2 ⁴	23	16	1024	19338	791	0.07	0.11	0.11	1.99	1.94	0.005	0.005
	2 ⁶	16	16	4096	18624	560	0.29	0.08	0.09	1.61	1.56	0.005	0.005
	2 ⁸	13	16	16384	18330	461	1.00	0.08	0.08	1.50	1.44	0.005	0.005

• *S* (public keys) and *t* (iterations) are inversely related to each other and control the running time of KGen and Sig (along with public key and signature size).

Performance Evaluation

- C implementation, parallelized with OpenMP, and benchmarked on 2.0GHz AMD EPYC 7702 processor with 16 cores and 32GB RAM (time in seconds, size in bytes)
- Source code: https://github.com/etairi/Adaptor-CSI-FiSh

S	t	sk	pk	$ \hat{\sigma} $	σ	KGen	Sig	Ver	PreSig	PreVer	Ext	Adapt
2 ¹	56	16	128	19944	1880	0.05	0.24	0.23	3.59	3.55	0.005	0.005
2 ²	38	16	256	19672	1286	0.06	0.16	0.16	2.75	2.68	0.005	0.005
2 ³	28	16	512	19020	956	0.07	0.13	0.14	2.21	2.15	0.005	0.005
2 ⁴	23	16	1024	19338	791	0.07	0.11	0.11	1.99	1.94	0.005	0.005
2 ⁶	16	16	4096	18624	560	0.29	0.08	0.09	1.61	1.56	0.005	0.005
2 ⁸	13	16	16384	18330	461	1.00	0.08	0.08	1.50	1.44	0.005	0.005

- *S* (public keys) and *t* (iterations) are inversely related to each other and control the running time of KGen and Sig (along with public key and signature size).
- The main bottleneck of the construction is the expensive ZK proof used in pre-signatures.

• IAS is an isogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and proven secure in QROM.

- IAS is an isogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and proven secure in QROM.
- Unlike LAS [EEE20], due to a group action structure we can achieve perfect correctness and do not hinder the privacy of the off-chain applications that use adaptor signatures.

- IAS is an isogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and proven secure in QROM.
- Unlike LAS [EEE20], due to a group action structure we can achieve perfect correctness and do not hinder the privacy of the off-chain applications that use adaptor signatures.
- Our technique to construct isogeny-based adaptor signature is generic enough to be applicable to other isogeny-based signature schemes (e.g., SQISign [DFKL⁺20]).

- IAS is an isogeny-based post-quantum adaptor signature based on CSI-FiSh [BKV19] and proven secure in QROM.
- Unlike LAS [EEE20], due to a group action structure we can achieve perfect correctness and do not hinder the privacy of the off-chain applications that use adaptor signatures.
- Our technique to construct isogeny-based adaptor signature is generic enough to be applicable to other isogeny-based signature schemes (e.g., SQISign [DFKL+20]).
- The future work is to improve the performance and obtain better security estimates [BS20, Pei20].

[ADFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis, Cryptographic group actions and applications, ASIACRYPT, 2020.

- [AEE+20] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostakova, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi, Generalized bitcoin-compatible channels, Cryptology ePrint Archive, Report 2020/476, 2020.
- [BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren, Csi-fish: Efficient isogeny based signatures through class group computations, ASIACRYPT, 2019.
- [BS20] Xavier Bonnetain and André Schrottenloher, Quantum security analysis of csidh, EUROCRYPT, 2020.
- [CLM⁺18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes, Csidh: An efficient post-quantum commutative group action, ASIACRYPT, 2018.

REFERENCES II

- [CS20] Daniele Cozzo and Nigel P. Smart, Sashimi: Cutting up csi-fish secret keys to produce an actively secure distributed signing protocol, PQCrypto, 2020.
- [DFG19] Luca De Feo and Steven D. Galbraith, Seasign: Compact isogeny signatures from class group actions, EUROCRYPT, 2019.
- [DFKL⁺20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski, Sqisign: Compact post-quantum signatures from quaternions and isogenies, ASIACRYPT, 2020.
- [EEE20] Muhammed F. Esgin, Oguzhan Ersoy, and Zekeriya Erkin, Post-quantum adaptor signatures and payment channel networks, Cryptology ePrint Archive, Report 2020/845, 2020.
- [ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler, Practical exact proofs from lattices: New techniques to exploit fully-splitting rings, Cryptology ePrint Archive, Report 2020/518, 2020.

- [Kup05] Greg Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, SIAM J. Comput. **35** (2005), no. 1, 170–188.
- [MMS⁺19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and Matteo Maffei, Anonymous multi-hop locks for blockchain scalability and interoperability, NDSS, 2019.
- [Pei20] Chris Peikert, He gives c-sieves on the csidh, EUROCRYPT, 2020.