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Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

» Scalability:
- Does not require on-chain transactions, works over payment channels

* Atomicity:
- No honest party loses coins

* Unlinkability:
- Gateway does not learn who is paying to whom

* Interoperabillity:
- Exchange coins between different currencies (e.g., ethers for bitcoin)
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~  Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain



Scalability

~  Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain

> One cannot open payment channel with everyone, hence, in practice parties use gateways
(payment channel hubs (PCHSs))
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Atomicity in PCHs

Should happen atomically
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Unlinkability in PCHs

>~ The gateway should not learn who is paying to whom (i.e., link sender/receiver pairs)
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Interoperability in PCHs

~  Create a PCH payment protocol backwards compatible with Bitcoin (and as many currencies
as possible)
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State-of-the-art

TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

Puzzle
Promise

G PuzzleRand( e) = G

PuzzleSol( a) =
Release( G =)

Puzzle
Solver

P
- &
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State-of-the-art

~ Drawbacks of TumbleBit:
* Lacks interoperability (only supports HTLC-based currencies,ﬂ IS a hash)

» Large communication overhead (due to the cut-and-choose proof technique needs to send
large number of &)

* Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises
which never get released later)
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State-of-the-art

~ Drawbacks of TumbleBit:
* Lacks interoperability (only supports HTLC-based currencies,ﬂ IS a hash)

» Large communication overhead (due to the cut-and-choose proof technique needs to send
large number of &)

* Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises
which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,
unlinkability, and interoperability (with virtually all cryptocurrencies)?

Yes!



Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)

> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures
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Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

m k3 Condition: C = k*G ™
txg: Gateway pays 1 coin to Bob &l
pkc = ska™G K @

Lock

Release
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Payment in PCH: First Attempt
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Privacy Solution
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PuzzleGen(@™) = a

Pay( )
G PuzzleRand( G) = a

T

Pay( )

PuzzleSol( ) = @

Recall in our case the puzzle a is the condition C = k*G, and the solution @ is the secret k.
Hence, the randomized puzzle G would correspond to computing C’ = r*k*G, for a random r

Gateway cannot solve the puzzle now as it does not know r. The solution is to extend the puzzle with
the encryption of the secret k under the gateway’s key
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Building Block: Randomizable Puzzle

Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

Goals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version a
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Building Block: Randomizable Puzzle

> Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

> (@Qoals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version a

BN = (C = k*G, ¢ = Enc(pka, k)) "
B = (C' =k*r*G, ¢’ = Enc(pkg, k*r))

Generate /
Randomize

RandPuzzle

Solve /
Derandomize




A2L: Protocol Overview

i1

il

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

AS +
RandPuzzle

14



A2L: Protocol Overview

i1

il

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

og, I

<>

AS +
RandPuzzle

og, 1, T

Share I’ with Alice

14



A2L: Protocol Overview

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

og, I

<>

AS +
RandPuzzle

og, 1, T

Share I’ with Alice

14



A2L: Protocol Overview

ﬂ Cn — rA*rB*k*G

(pka, SKa, ra)

o, A" Ire "k

Share rz"k with
Bob

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

[1”, tdg, oA

O, A re"k

og, I

<>

C=k*G

AS +
RandPuzzle

'B

4,

og, 1, T

Share I’ with Alice

14



A2L: Protocol Overview

o
C’'=ra"re"k*G C=k*G
&l
(Pka, ska, r») (pka, ska, ppa, tdg, k) s
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska [T, ra Share I’ with Alice
OA oa, [l
) AS + AS +
RandPuzzle M”. tde. Oa RandPuzzle
O, 'a sk O, 'a"rs"k K
éhare r5 "k with *
Bob o, Kk o’

14



A2L: Protocol Overview

re
C” =ra rB*k*G C K*QG
(Pka, ska, ra) (pka, ska, ppa; tda, k) B
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska T, ra Share T with Alice
OA oa, [l
| AS + AS +
RandPuzzle M”. tde. Oa RandPuzzle
O, 'a sk O, 'a"rs"k K
éhare r5 "k with <
Bob o, Kk o’

14



A2L: Protocol Overview

e
C” = ra rB*k*G C K*G
&l
(Pka, ska, ra) (pka, ska, ppa; tda, k) B
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska T, ra Share I’ with Alice
OA oa, I
| AS + ] AS +
RandPuzzle

RandPuzzle M

o, A" Ire "k O ra*rg™k
4 NS y
Share rg"k with N

Bob 0 o’

14



Discussion

> Privacy-preserving registration protocol to protect against griefing attacks
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Discussion

computation compared to TumbleBit

> A2L incurs 33X less bandwidth overhead and provides 2x speedup In

LAN 0.008 0.475 0.118
LAN (pre-processing) 0.008 0.194 0.118

Bandwidth (KB) 0.30 7.31 231

Performance of A2L instantiated with ECDSA signature. Time shown in seconds.

'Payment hub over Amazon AWS machines in Oregon-Frankfurt-Singapore.

3.053

0.601

0.320

9.92
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Conclusion

>~ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperabllity
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Thank You!

@erkantairi
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