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‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on 
trustless gateways (hubs):
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‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on 
trustless gateways (hubs):

• Scalability:  
- Does not require on-chain transactions, works over payment channels

• Atomicity: 
- No honest party loses coins

• Unlinkability: 
- Gateway does not learn who is paying to whom

• Interoperability: 
- Exchange coins between different currencies (e.g., ethers for bitcoin)

2

Contributions



‣ Payment channels allow parties to perform arbitrarily many payments off-chain, with only 
two transactions (i.e., open and close channel) going on-chain
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‣ Payment channels allow parties to perform arbitrarily many payments off-chain, with only 
two transactions (i.e., open and close channel) going on-chain

‣ One cannot open payment channel with everyone, hence, in practice parties use gateways 
(payment channel hubs (PCHs))
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Atomicity in PCHs

Should happen atomically 
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Unlinkability in PCHs

‣ The gateway should not learn who is paying to whom (i.e., link sender/receiver pairs)
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Interoperability in PCHs

‣ Create a PCH payment protocol backwards compatible with Bitcoin (and as many currencies 
as possible)
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State-of-the-art

‣ Drawbacks of TumbleBit:
• Lacks interoperability (only supports HTLC-based currencies,     is a hash)
• Large communication overhead (due to the cut-and-choose proof technique needs to send 

large number of     )
• Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises 

which never get released later)
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State-of-the-art

‣ Drawbacks of TumbleBit:
• Lacks interoperability (only supports HTLC-based currencies,     is a hash)
• Large communication overhead (due to the cut-and-choose proof technique needs to send 

large number of     )
• Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises 

which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,  
unlinkability, and interoperability (with virtually all cryptocurrencies)?

Yes!
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Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of 
the signature corresponds to      , and the secret k to 

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

https://eprint.iacr.org/2020/476
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Privacy Solution

PuzzleGen(  ) =
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‣ Recall in our case the puzzle      is the condition C = k*G, and the solution        is the secret k. 
Hence, the randomized puzzle      would correspond to computing C’ = r*k*G, for a random r

‣ Gateway cannot solve the puzzle now as it does not know r. The solution is to extend the puzzle with 
the encryption of the secret k under the gateway’s key
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Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively 

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle      that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version
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TokenRand( ) = 
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‣ A2L incurs 33x less bandwidth overhead and provides 2x speedup in 
computation compared to TumbleBit
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Discussion

Registration Puzzle Promise Puzzle Solver Total

WAN1 0.726 1.251 1.076 3.053

LAN 0.008 0.475 0.118 0.601

LAN (pre-processing) 0.008 0.194 0.118 0.320

Bandwidth (KB) 0.30 7.31 2.31 9.92

Performance of A2L instantiated with ECDSA signature. Time shown in seconds. 
1Payment hub over Amazon AWS machines in Oregon-Frankfurt-Singapore.
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Thank You!
       @erkantairi
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