PP

-
Y

......

—= minstitu

te
WIEN N dea

]
g T ‘
I e n n a u S t rl .'-i:!‘:r'f'z""-"!":.l\"* s AN . ', 2
g 1_'__. e Zals oy
- O
[— -\.Avvz‘v:::"f oot g
ot gAY
o ey v
o

-
4T
O

10

|||||||

wr v
g Y

Y

m———

A2L: Anonymous Atomic Locks for Scalability
iIn Payment Channel Hubs

Erkan Tairi!, Pedro Moreno-Sanchez2, Matteo Maffei?

1TU Wien
2IMDEA Software Institute

IEEE Symposium on Security and Privacy 2021

FAKULTAT FUR
INFORMATIK

Faculty of Informatics

GROUP

Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):
» Scalability:
- Does not require on-chain transactions, works over payment channels

Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):
» Scalability:
- Does not require on-chain transactions, works over payment channels
* Atomicity:
- No honest party loses coins

Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

» Scalability:
- Does not require on-chain transactions, works over payment channels

* Atomicity:
- No honest party loses coins

* Unlinkability:
- Gateway does not learn who is paying to whom

Contributions

~Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

» Scalability:
- Does not require on-chain transactions, works over payment channels

* Atomicity:
- No honest party loses coins

* Unlinkability:
- Gateway does not learn who is paying to whom

* Interoperabillity:
- Exchange coins between different currencies (e.g., ethers for bitcoin)

Scalability

~ Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain

Scalability

~ Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain

> One cannot open payment channel with everyone, hence, in practice parties use gateways
(payment channel hubs (PCHSs))

e
S—

Atomicity in PCHs

o M

Atomicity in PCHs

o M
L M

o
ol
& re

ol

Atomicity in PCHs

Should happen atomically

o M
L M

e
i
% ro

i

Unlinkability in PCHs

>~ The gateway should not learn who is paying to whom (i.e., link sender/receiver pairs)

e

Interoperability in PCHs

~ Create a PCH payment protocol backwards compatible with Bitcoin (and as many currencies
as possible)

State-of-the-art

> TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

State-of-the-art

> TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

4 M- I

PuzzleGen(@) = a

Pay(k3)

State-of-the-art

> TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

4 M- I

PuzzleGen(@) = a

Pay()
G PuzzleRand(a) = G

State-of-the-art

TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

Puzzle
Promise

a PuzzleRand(a) = G

State-of-the-art

TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

Puzzle
Promise

G PuzzleRand(ﬁ) = a

<>

PuzzleSol(fry1) = @ww
o Release(ﬂ D) = G

State-of-the-art

TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

Puzzle
Promise

G PuzzleRand(ﬁ) = a

<>

PuzzleSol(iry) = @w»
o Release(ﬂ D) = G
« SolDerand(@) = @w»
Pow Release(a P) = a

State-of-the-art

TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

Puzzle
Promise

G PuzzleRand(e) = G

PuzzleSol(a) =
Release(G =)

Puzzle
Solver

P
- &
SolDerand(@)
Pn Release(a P) = a

State-of-the-art

~ Drawbacks of TumbleBit:
* Lacks interoperability (only supports HTLC-based currencies,ﬂ IS a hash)

» Large communication overhead (due to the cut-and-choose proof technique needs to send
large number of &)

* Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises
which never get released later)

State-of-the-art

~ Drawbacks of TumbleBit:
* Lacks interoperability (only supports HTLC-based currencies,ﬂ IS a hash)

» Large communication overhead (due to the cut-and-choose proof technique needs to send
large number of &)

* Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises
which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,
unlinkability, and interoperability (with virtually all cryptocurrencies)?

State-of-the-art

~ Drawbacks of TumbleBit:
* Lacks interoperability (only supports HTLC-based currencies,ﬂ IS a hash)

» Large communication overhead (due to the cut-and-choose proof technique needs to send
large number of &)

* Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises
which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,
unlinkability, and interoperability (with virtually all cryptocurrencies)?

Yes!

Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)

> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

https://eprint.iacr.org/2020/476

Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)

> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

il

Pke = skg™G

k3 Condition: C = k*G o
txg: Gateway pays 1 coin to Bob &l

https://eprint.iacr.org/2020/476

Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)

> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

m ﬁ Condition: C = k*G o
txg: Gateway pays 1 coin to Bob &l
Pke = skg™G
tXg, ska
OG OG

AS

https://eprint.iacr.org/2020/476

Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

il

Pke = skg™G

k3 Condition: C = k*G re
txg: Gateway pays 1 coin to Bob &l

Lock

https://eprint.iacr.org/2020/476

Building Block: Adaptor Signatures (AS)

>~ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
> (Goals:

* (Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to é and the secret k to @

» |If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

m k3 Condition: C = k*G ™
txg: Gateway pays 1 coin to Bob &l
pkc = ska™G K @

Lock

Release

https://eprint.iacr.org/2020/476

Payment in PCH: First Attempt

il

(Pka, ska)

C

- M -

(pka, ska, k)

AS

K*G

e

&l
(pks, Sks)

AS

10

Payment in PCH: First Attempt

AS

K*G

AS

e

10

Payment in PCH: First Attempt

il

(Pka, ska)

C

e
k*G C =k*G
—

AS

(pKag, skg, k) (pks, skg)
AS

10

Payment in PCH: First Attempt

(Pka, ska)

tXxa, Ska

AS

L oo iy oo

K)

e
—

AS

10

Payment in PCH: First Attempt

il il -
C=k"G C=k"G
ail

(pka, SKa) (pKag, skg, k)

Release

o, K

10

Payment in PCH: First Attempt

L oo iy oo

(pka, SKa) (pKag, skg, k)

Release

Release
o, K

Share k with Bob

Payment in PCH: First Attempt

(pka, SKa) (pKa, skg, k

ﬂ C=k*G C=k*G
an

)

o

Puzzle Solver

Puzzle Solver

AS

Puzzle Solver

10

Payment in PCH: First Attempt

(pka, SKa) (pKag, skg, k)

Release

Release

o, K

AS

Privacy Issue

L oo i oo

(pka, ska)

e

(pks, Sks)

(pka, ska, k)
tXg, ska
OG
oA
K
O
o, K

AS

OG

11

Privacy Issue

TN (R

(pka, SKa) (pKag, skg, k) pkB, Skg)
tXg, ska
oG OG
tXxa, Ska
OA OA
AS AS
k
o, K o ”
o, k o’

Privacy Issue

TN (R

(pka, SKa) (pKag, skg, k) pkB, Skg)
tXg, ska
oG OG
tXxa, Ska
oA OA
AS AS
o, k 0] ”
0’, O

il

Privacy Solution

m

PuzzleGen(@™) = G

Pay(o)
a PuzzleRand(a)

Pay()

PuzzleSol(G) = @

o

12

>

Privacy Solution

e

il

PuzzleGen(@™) = a

Pay()
G PuzzleRand(G) = a

Pay()

PuzzleSol() = @

Recall in our case the puzzle a is the condition C = k*G, and the solution @ is the secret k.
Hence, the randomized puzzle ﬁwould correspond to computing C’ = r*k*G, for a random r

12

Privacy Solution

e
S

il

PuzzleGen(@™) = a

Pay()
G PuzzleRand(G) = a

T

Pay()

PuzzleSol() = @

Recall in our case the puzzle a is the condition C = k*G, and the solution @ is the secret k.
Hence, the randomized puzzle G would correspond to computing C’ = r*k*G, for a random r

Gateway cannot solve the puzzle now as it does not know r. The solution is to extend the puzzle with
the encryption of the secret k under the gateway’s key

12

Building Block: Randomizable Puzzle

Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

Goals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version a

13

Building Block: Randomizable Puzzle

Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

Goals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version ﬁ

il -

pp, td, k r

13

Building Block: Randomizable Puzzle

Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

Goals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version a

B M = (C = kK*G, ¢ = Enc(pkag, k) "
B M= (C’ = k*r*G, ¢’ = Enc(pka, k*r))
pp, td, k r
pp, K r
M [1, [T

RandPuzzle

Building Block: Randomizable Puzzle

> Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

> (@Qoals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version G

B M = (C = kK*G, ¢ = Enc(pkag, k) "
B = (C' =k*r*G, ¢’ = Enc(pkg, k*r))

Generate /
Randomize

RandPuzzle

Building Block: Randomizable Puzzle

> Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

> (@Qoals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version G

B M = (C = kK*G, ¢ = Enc(pkag, k) "
B = (C' =k*r*G, ¢’ = Enc(pkg, k*r))

Generate /
Randomize

RandPuzzle

td [T, r

Building Block: Randomizable Puzzle

> Randomizable puzzle combines the condition of adaptor signature with an encryption under additively
homomorphic encryption scheme

> (@Qoals:
« (Gateway can create a puzzle athat can be solved using a trapdoor (e.g., secret key)

» The puzzle can be randomized to create a fresh looking version a

BN = (C = k*G, ¢ = Enc(pka, k)) "
B = (C' =k*r*G, ¢’ = Enc(pkg, k*r))

Generate /
Randomize

RandPuzzle

Solve /
Derandomize

A2L: Protocol Overview

i1

il

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

AS +
RandPuzzle

14

A2L: Protocol Overview

i1

il

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

og, I

<>

AS +
RandPuzzle

og, 1, T

Share I’ with Alice

14

A2L: Protocol Overview

(pka, SKa, ra)

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

og, I

<>

AS +
RandPuzzle

og, 1, T

Share I’ with Alice

14

A2L: Protocol Overview

ﬂ Cn — rA*rB*k*G

(pka, SKa, ra)

o, A" Ire "k

Share rz"k with
Bob

AS +
RandPuzzle

(pka, ska, ppa, tda, k)

txa, ska, ppac

[1”, tdg, oA

O, A re"k

og, I

<>

C=k*G

AS +
RandPuzzle

'B

4,

og, 1, T

Share I’ with Alice

14

A2L: Protocol Overview

o
C’'=ra"re"k*G C=k*G
&l
(Pka, ska, r») (pka, ska, ppa, tdg, k) s
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska [T, ra Share I’ with Alice
OA oa, [l
) AS + AS +
RandPuzzle M”. tde. Oa RandPuzzle
O, 'a sk O, 'a"rs"k K
éhare r5 "k with *
Bob o, Kk o’

14

A2L: Protocol Overview

re
C” =ra rB*k*G C K*QG
(Pka, ska, ra) (pka, ska, ppa; tda, k) B
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska T, ra Share T with Alice
OA oa, [l
| AS + AS +
RandPuzzle M”. tde. Oa RandPuzzle
O, 'a sk O, 'a"rs"k K
éhare r5 "k with <
Bob o, Kk o’

14

A2L: Protocol Overview

e
C” = ra rB*k*G C K*G
&l
(Pka, ska, ra) (pka, ska, ppa; tda, k) B
tXGa Sst PPG 'B
og, I og, 1, T
txa, ska T, ra Share I’ with Alice
OA oa, I
| AS +] AS +
RandPuzzle

RandPuzzle M

o, A" Ire "k O ra*rg™k
4 NS y
Share rg"k with N

Bob 0 o’

14

Discussion

> Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

> Privacy-preserving registration protocol to protect against griefing attacks

4 M I

15

Discussion

> Privacy-preserving registration protocol to protect against griefing attacks

4 M I

.

15

Discussion

> Privacy-preserving registration protocol to protect against griefing attacks

4 M I

<k

TokenRand(|=5|)

|
£

g

g

15

Discussion

> Privacy-preserving registration protocol to protect against griefing attacks

4 M I

<=

TokenRand(|=5|)

|
£

g

g

— O

<=

Puzzle Promise

15

Discussion

computation compared to TumbleBit

> A2L incurs 33X less bandwidth overhead and provides 2x speedup In

LAN 0.008 0.475 0.118
LAN (pre-processing) 0.008 0.194 0.118

Bandwidth (KB) 0.30 7.31 231

Performance of A2L instantiated with ECDSA signature. Time shown in seconds.

'Payment hub over Amazon AWS machines in Oregon-Frankfurt-Singapore.

3.053

0.601

0.320

9.92

16

Conclusion

>~ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperabllity

17

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

Conclusion

>~ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

> Formally specified and proven secure (in the UC framework)

17

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

Conclusion

>~ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

> Formally specified and proven secure (in the UC framework)

>~ Advantages:
» Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
* Protection against griefing attacks
* The most efficient Bitcoin-compatible PCH

17

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

Conclusion

A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

Formally specified and proven secure (in the UC framework)

Advantages:

» Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
* Protection against griefing attacks

* The most efficient Bitcoin-compatible PCH

Paper available at https://eprint.iacr.org/2019/589.pdf
Our C implementation available at https://github.com/etairi/A2L

Rust implementation by COMIT Network available at https://github.com/comit-network/a2l-poc

17

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

Conclusion

A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

Formally specified and proven secure (in the UC framework)

Advantages:

» Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
* Protection against griefing attacks

* The most efficient Bitcoin-compatible PCH

Paper available at https://eprint.iacr.org/2019/589.pdf
Our C implementation available at https://github.com/etairi/A2L

Rust implementation by COMIT Network available at https://github.com/comit-network/a2l-poc

Thank You!

@erkantairi

17

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

