
FAKULTÄT FÜR
!NFORMATIK
Faculty of Informatics

SECURITY &
PRIVACY
GROUP

A2L: Anonymous Atomic Locks for Scalability
in Payment Channel Hubs

Erkan Tairi1, Pedro Moreno-Sanchez2, Matteo Maffei1

1TU Wien
2IMDEA Software Institute

IEEE Symposium on Security and Privacy 2021

‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

2

Contributions

‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

• Scalability:  
- Does not require on-chain transactions, works over payment channels

2

Contributions

‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

• Scalability:  
- Does not require on-chain transactions, works over payment channels

• Atomicity: 
- No honest party loses coins

2

Contributions

‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

• Scalability:  
- Does not require on-chain transactions, works over payment channels

• Atomicity: 
- No honest party loses coins

• Unlinkability: 
- Gateway does not learn who is paying to whom

2

Contributions

‣ Construction for scalable, secure, interoperable and privacy-preserving payments based on
trustless gateways (hubs):

• Scalability:  
- Does not require on-chain transactions, works over payment channels

• Atomicity: 
- No honest party loses coins

• Unlinkability: 
- Gateway does not learn who is paying to whom

• Interoperability: 
- Exchange coins between different currencies (e.g., ethers for bitcoin)

2

Contributions

‣ Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain

3

Scalability

‣ Payment channels allow parties to perform arbitrarily many payments off-chain, with only
two transactions (i.e., open and close channel) going on-chain

‣ One cannot open payment channel with everyone, hence, in practice parties use gateways
(payment channel hubs (PCHs))

3

Scalability

4

Atomicity in PCHs

4

Atomicity in PCHs

4

Atomicity in PCHs

Should happen atomically

5

Unlinkability in PCHs

‣ The gateway should not learn who is paying to whom (i.e., link sender/receiver pairs)

6

Interoperability in PCHs

‣ Create a PCH payment protocol backwards compatible with Bitcoin (and as many currencies
as possible)

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

PuzzleRand() =

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

PuzzleRand() = Pu
zz

le

Pr
om

is
e

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =
Release() =

Pu
zz

le

Pr
om

is
e

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =
Release() =

Release() =
SolDerand() =

Pu
zz

le

Pr
om

is
e

7

State-of-the-art

‣ TumbleBit is the state-of-the-art PCH introduced by Heilman et al. (NDSS’17), composed of
puzzle promise and puzzle solver protocols

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =
Release() =

Release() =
SolDerand() =

Pu
zz

le

Pr
om

is
e

Pu
zz

le

So
lv

er

8

State-of-the-art

‣ Drawbacks of TumbleBit:
• Lacks interoperability (only supports HTLC-based currencies, is a hash)
• Large communication overhead (due to the cut-and-choose proof technique needs to send

large number of)
• Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises

which never get released later)

8

State-of-the-art

‣ Drawbacks of TumbleBit:
• Lacks interoperability (only supports HTLC-based currencies, is a hash)
• Large communication overhead (due to the cut-and-choose proof technique needs to send

large number of)
• Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises

which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,  
unlinkability, and interoperability (with virtually all cryptocurrencies)?

8

State-of-the-art

‣ Drawbacks of TumbleBit:
• Lacks interoperability (only supports HTLC-based currencies, is a hash)
• Large communication overhead (due to the cut-and-choose proof technique needs to send

large number of)
• Susceptible to griefing attacks (i.e., asking the gateway for a large number of promises

which never get released later)

Is it possible to design a PCH that is efficient and that provides atomicity,  
unlinkability, and interoperability (with virtually all cryptocurrencies)?

Yes!

9

Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to , and the secret k to

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

https://eprint.iacr.org/2020/476

9

Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to , and the secret k to

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

txG: Gateway pays 1 coin to Bob

Condition: C = k*G

pkG = skG*G

https://eprint.iacr.org/2020/476

9

Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to , and the secret k to

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

 AS

txG, skG

σG σG

txG: Gateway pays 1 coin to Bob

Condition: C = k*G

pkG = skG*G

https://eprint.iacr.org/2020/476

9

Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to , and the secret k to

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

 AS

txG, skG

σG σG Lock

txG: Gateway pays 1 coin to Bob

Condition: C = k*G

pkG = skG*G

https://eprint.iacr.org/2020/476

9

Building Block: Adaptor Signatures (AS)
‣ Formally defined by Aumayr et al. (https://eprint.iacr.org/2020/476)
‣ Goals:

• Gateway can create an “incomplete-signature” that Bob can only finish using a secret value k. The condition of
the signature corresponds to , and the secret k to

• If Bob finishes the signature, Gateway learns k using the full and incomplete signatures

 AS

txG, skG

σG σG Lock

txG: Gateway pays 1 coin to Bob

Condition: C = k*G

pkG = skG*G k

σ Releaseσ, k
k

https://eprint.iacr.org/2020/476

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*GC = k*G

(pkG, skG, k)

ASAS

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

Lock

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

Lock
Puzzle Promise

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

Lock

Lock

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

Share k with Bob

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

Puzzle Solver

Puzzle Solver

Puzzle Solver

10

Payment in PCH: First Attempt

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

Lock

Lock

Release

Release

11

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

11

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

11

Privacy Issue

(pkA, skA) (pkB, skB)

C = k*G

txG, skG

σGσG

k

σ’σ’, k

C = k*G

(pkG, skG, k)

ASAS

txA, skA

σA σA

k

σσ, k

12

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =

‣ Recall in our case the puzzle is the condition C = k*G, and the solution is the secret k.
Hence, the randomized puzzle would correspond to computing C’ = r*k*G, for a random r

12

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =

‣ Recall in our case the puzzle is the condition C = k*G, and the solution is the secret k.
Hence, the randomized puzzle would correspond to computing C’ = r*k*G, for a random r

‣ Gateway cannot solve the puzzle now as it does not know r. The solution is to extend the puzzle with
the encryption of the secret k under the gateway’s key

12

Privacy Solution

PuzzleGen() =
Pay()

PuzzleRand() =

Pay()

PuzzleSol() =

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

pp, td, k r

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

RandPuzzle

 pp, k

Π Π, Π’

r
pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
 Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

RandPuzzle

 pp, k

Π Π, Π’

r
Generate /
Randomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
 Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Π’, r

k
td

RandPuzzle

 pp, k

Π Π, Π’

r
Generate /
Randomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
 Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

13

Building Block: Randomizable Puzzle
‣ Randomizable puzzle combines the condition of adaptor signature with an encryption under additively

homomorphic encryption scheme
‣ Goals:

• Gateway can create a puzzle that can be solved using a trapdoor (e.g., secret key)

• The puzzle can be randomized to create a fresh looking version

Π’, r

k
td

RandPuzzle

 pp, k

Π Π, Π’

r
Generate /
Randomize

Solve /
Derandomize

pp, td, k r

Π = (C = k*G, c = Enc(pkG, k))
 Π’ = (C’ = k*r*G, c’ = Enc(pkG, k*r))

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

(pkG, skG, ppG, tdG, k)

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

(pkG, skG, ppG, tdG, k)

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle

C’’ = rA*rB*k*G

txA, skA, Π’, rA

σA, Π’’σA

(pkG, skG, ppG, tdG, k)

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

AS +
RandPuzzle Π’’, tdG, σA

σ, rA*rB*k σ, rA*rB*k

C’’ = rA*rB*k*G

txA, skA, Π’, rA

σA, Π’’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’’, tdG, σA

σ, rA*rB*k σ, rA*rB*k

C’’ = rA*rB*k*G

txA, skA, Π’, rA

σA, Π’’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’’, tdG, σA

σ, rA*rB*k σ, rA*rB*k

C’’ = rA*rB*k*G

txA, skA, Π’, rA

σA, Π’’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

14

A2L: Protocol Overview

(pkA, skA, rA) rB

C = k*G

AS +
RandPuzzle

k

σ’σ’, k

AS +
RandPuzzle Π’’, tdG, σA

σ, rA*rB*k σ, rA*rB*k

C’’ = rA*rB*k*G

txA, skA, Π’, rA

σA, Π’’σA

(pkG, skG, ppG, tdG, k)

Share rB*k with
Bob

txG, skG, ppG rB

σG, Π, Π’σG, Π

Share Π’ with Αlice

‣ Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

‣ Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

‣ Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

‣ Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

TokenRand() =

‣ Privacy-preserving registration protocol to protect against griefing attacks

15

Discussion

TokenRand() =

Puzzle Promise

‣ A2L incurs 33x less bandwidth overhead and provides 2x speedup in
computation compared to TumbleBit

16

Discussion

Registration Puzzle Promise Puzzle Solver Total

WAN1 0.726 1.251 1.076 3.053

LAN 0.008 0.475 0.118 0.601

LAN (pre-processing) 0.008 0.194 0.118 0.320

Bandwidth (KB) 0.30 7.31 2.31 9.92

Performance of A2L instantiated with ECDSA signature. Time shown in seconds.
1Payment hub over Amazon AWS machines in Oregon-Frankfurt-Singapore.

‣ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

17

Conclusion

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

‣ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

‣ Formally specified and proven secure (in the UC framework)

17

Conclusion

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

‣ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

‣ Formally specified and proven secure (in the UC framework)

‣ Advantages:
• Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
• Protection against griefing attacks
• The most efficient Bitcoin-compatible PCH

17

Conclusion

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

‣ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

‣ Formally specified and proven secure (in the UC framework)

‣ Advantages:
• Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
• Protection against griefing attacks
• The most efficient Bitcoin-compatible PCH

‣ Paper available at https://eprint.iacr.org/2019/589.pdf
‣ Our C implementation available at https://github.com/etairi/A2L
‣ Rust implementation by COMIT Network available at https://github.com/comit-network/a2l-poc

17

Conclusion

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

‣ A2L is a cryptographic protocol for PCHs that achieves security, unlinkability and
interoperability

‣ Formally specified and proven secure (in the UC framework)

‣ Advantages:
• Fully backwards compatible with Bitcoin, and scriptless cryptocurrencies (e.g., Monero)
• Protection against griefing attacks
• The most efficient Bitcoin-compatible PCH

‣ Paper available at https://eprint.iacr.org/2019/589.pdf
‣ Our C implementation available at https://github.com/etairi/A2L
‣ Rust implementation by COMIT Network available at https://github.com/comit-network/a2l-poc

17

Conclusion

Thank You!
 @erkantairi

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L
https://github.com/comit-network/a2l-poc

